第一范文网 - 专业文章范例文档资料分享平台

天津市耀华中学2019-2020学年高二上学期期中考试数学试题 Word版含答案

来源:用户分享 时间:2025/5/19 20:42:28 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

高中数学资料共享群284110736,每天都有更新,海量资料随意下载。

天津市耀华中学2019-2020学年度第一学期期中形成性检测

高二年级数学学科试卷

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分.考试用时100分钟.祝同学们考试顺利!

第Ⅰ卷 (选择题 共48分)

一.选择题:本大题共12小题,每小题4分,共48分,在每小题的4个选项中,只有一项是符合题目要求的,将答案涂在答题卡上. .........1.

的否定是

2若命题p:?x?R,x2?2x?2?0 ,则命题pA.?x?R,x?2x?2?0 B.?x?R , x2?2x?2?0 C.?x?R , x2?2x?2?0 D.?x?R , x2?2x?2?0 2. 已知数列{an}是等差数列,若a1?2,a4?2a3,则公差d? A.0

B.2 C.?1

D.?2

3. 若b?0,则“a,b,c成等比数列”是“b?ac”的

A. 充分非必要条件 B. 必要非充分条件 C.充分必要条件 D.既不充分也不必要条件

*4. 在等差数列{an}中,首项a1?0,公差d?0,前n项和为Sn(n?N),且满足S3?S15,

则Sn的最大项为

A.S7 B.S8 C.S9 D.S10 5. 若数列?an?满足a1?2, an?1?1?an,则a2019的值为 1?an11 D. 236. 若不等式ax2?bx?c?0的解集是(?2,3),则不等式bx2?ax?c?0的解集是

A. 2 B. ?3 C. ?A. ??3,2? B. ??2,3? C. (??,?2)(3,??) D. (??,?3)(2,??)

公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号!

高中数学资料共享群284110736,每天都有更新,海量资料随意下载。

7. 如果关于x的不等式(a?2)x2?2(a?2)x?4?0对一切实数x恒成立,则实数a的取值范围是

A. (-∞,2] B.(-∞,-2) C.(-2,2] D.(-2, 2)

a28. 设常数a?0,若9x??a?1对一切正实数x成立,则a的取值范围为

xA. ?,??? B. ?,??? C. ???,? D. ???,?

5?5??5??5???9. 数列{an}满足an=

?1??1??1??1?1?2?3???n1

,则数列{}的前n项和为

anan?1n2nn C. n?2n?12n n?1A.

n n?2 B. D.

10. 已知a?0,b?0,且满足a?b?1,则

b4

?的最小值为 ab

A. 8 B.9 C. 4 D. 4?22

??1????a?n?2n?8(n?N?),若对于任意列n?N?都有 11. 已知数列{an}满足an=??3??an?7n?8?an?an?1,则实数a的取值范围是

A.?0,? B.?0,? C.?,1? D. ?,??1?3???1?2??1??2??11?? ?32?12. 设正实数x,y,z满足x?3xy?4y?z?0.则当值为

A.0 B.1 C.

22xy412取得最大值时,??的最大

xyzz9 D. 4

第Ⅱ卷(非选择题 共52分)

公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号!

高中数学资料共享群284110736,每天都有更新,海量资料随意下载。

二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题卡上. ..........

n13. 等比数列{an}中,Sn为其前n项和,若Sn?3?2?a,则a= ▲ .

|x?a|?4,q:?x2?5x?6?0,若q是p的充分非必要条件,则实数a的取值14. 已知p:范围为 ▲ .

?15. 设数列{an}的前n项和为Sn.若S2?4,an?1?2Sn?1,n?N,则a1= ▲ ,S5= ▲.

16. 等比数列?an?中,若a3?a4?a6?a7?81,则a1a9的值为 ▲ .

17. 已知数列?an?满足a1?33,an?1?an?2n,则

an的最小值为 ▲ . n18. 下列命题中:

①若a2+b2=2,则a+b的最大值为2;②当a?0,b?0时,

1a?1b?2ab?4; ba③函数y?x2?5x?42的最小值为2; ④当且仅当a,b均为正数时,

ab??2恒成立.

其中是真命题的是 ▲ .(填上所有真命题的序号)

三、解答题:本题共2个题,共计22分,解答应写出必要的文字说明、证明过程或演算步骤.将.答案填写在答题卡上. .........

19. (本题满分9分)已知{an}为正项等比数列,a1?1,a5?256;Sn为等差数列{bn}的前

n项和,b1?2,5S5?2S8.

(Ⅰ) 求{an}和{bn}的通项公式; (Ⅱ) 设Tn?a1b1?a2b2?

?anbn,求Tn.

公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号!

高中数学资料共享群284110736,每天都有更新,海量资料随意下载。

20. (本题满分13分)已知函数f(x)?x2?ax?b(a,b?R).

(Ⅰ)当b?2a2?3a?1时,解关于x的不等式f(x)?0

(Ⅱ)若正数a,b满足a?的值.

4?3,且对于任意的x??1,???,f(x)?0恒成立,求实数a,bb公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号!

高中数学资料共享群284110736,每天都有更新,海量资料随意下载。

天津市耀华中学2019—2020学年度第一学期期中形成性检测

高二年级数学学科参考答案

一.选择题:本大题共12小题,每小题4分,共48分. 题号 答案 1 C 2 D 3 B 4 C 5 C 6 D 7 C 8 A 9 B 10 A 11 C 12 C 二.填空题:本大题共6小题,每小题5分,共计30分

13.?3; 14.[?1,6]; 15.1,121; 16.9; 17.三.解答题:本大题共2小题,共22分. 18.(本题满分9分)

4n?1解:(Ⅰ)设Sn的公比为q,由a5?a1q,得q?4.所以an?4.

21; 18.①②. 2设{bn}的公差为d,由5S5?2S8得d?所以bn?b1?(n?1)d?3n?1(2) (Ⅱ)Tn?1?2?4?5?4?8?233b1??2?3, 22?4n?1(3n?1)① ?4n?3n?1?②

4Tn?4?2?42?5?②-①得:3Tn??2?34?42?...?4n?1?4n?3n?1??2??3n?2??4n. 所以Tn??n?19.(本题满分13分)

解:(Ⅰ)当b?2a2?3a?1时 ,不等式f(x)?0即为[x?(1?2a)][x?(a?1)]?0.

????2?n2??4?. 3?3①当a?2时 ,不等式的解集为[a?1,1?2a]; 32?1?时 ,不等式的解集为???; 3?3?②当a?公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号!

天津市耀华中学2019-2020学年高二上学期期中考试数学试题 Word版含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c85ql25llk27wp9920czo7b3ef97wu60103y_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top