第六章 线性离散系统的分析与校正
习题及答案
6-1 试求下列函数的z变换 (1) (2) (3)tTe(t)?a
e(t)?t2e?3t
s?1E(s)?2
sE(s)?s?3 s(s?1)(s?2)(4)解 (1)E(z)?2?an?0?nz?n?1z? ?1z?a1?azT2z(z?1) (2)Z?t?? 3(z?1)由移位定理:
T2ze3T(ze3T?1)T2ze?3T(z?e?3T) Zte??3T3?3T3(ze?1)(z?e)s?111 (3)E(s)?2??2
ssszTzE(z)??
z?1(z?1)2ccc (4)E(s)?0?1?2
ss?1s?2s?33c0?lim?s?0(s?1)(s?2)2s?32???2 c1?lims??1s(s?2)?1s?31c2?lim?s??2s(s?1)232122 ? ??ss?1s?23z2zz?? E(z)?
2(z?1)z?e?T2(z?e?2T)?2?3t?
1
6-2 试分别用部分分式法、幂级数法和反演积分法求下列函数的z反变换。 (1)10z
(z?1)(z?2)?3?z?1(2)E(z)?
1?2z?1?z?210z解 (1)E(z)?
(z?1)(z?2)E(z)?① 部分分式法
E(z)?10?1010???z(z?1)(z?2)z?1z?2?10z10z? E(z)?
(z?1)(z?2)e(nT)??10?1?10?2n?10(2n?1)② 幂级数法:用长除法可得
E(z)?10z10z?2?10z?1?30z?2?70z?3??(z?1)(z?2)z?3z?2
e*(t)?10?(t?T)?30?(t?2T)?70?(t?3T)??③ 反演积分法
10znRes?E(z)?z?z?1?lim??10z?1z?210znn?1Res?E(z)?z?z?2?lim?10?2nz?2z?1
e(nT)??10?1?10?2n?10(2n?1)n?1e(t)??10(2n?1)?(t?nT)*n?0??3?z?1z(?3z?1)z(?3z?1) (2) E(z)? ???2221?2z?zz?2z?1(z?1)① 部分分式法
2
E(z)1?3z?23???z(z?1)2(z?1)2z?1?2z3zE(z)??(z?1)2z?1
?2e(t)?t?3?1(t)T????2?*e(t)???nT?3??(t?nT)??(?2n?3)?(t?nT)?n?0?Tn?0② 幂级数法:用长除法可得
?3z2?zE(z)?2??3?5z?1?7z?2?9z?3?? z?2z?1e*(t)??3?(t)?5?(t?T)?7?(t?2T)?9?(t?3T)??③ 反演积分法
1d???1lim?(?3z!dz ?lim??3(n?1)z?nz???2n?3
e(nT)?ResE(z)?zs?1?n?12z?1s?1?z)?zn?1
?nn?1 e(t)?*?(?2n?3)?(t?nT)
n?0
6-3 试确定下列函数的终值 (1)(2)Tz?1E(z)??12
(1?z)0.792z2 E(z)?2(z?1)(z?0.416z?0.208)?1Tz?1解 (1)ess?lim(1?z)?? ?12z?1(1?z)ess?lim(z?1)E(z)z?1(2)
0.792z20.792?lim2??1z?1z?0.416z?0.2081?0.416?0.208
6-4 已知差分方程为
c(k)?4c(k?1)?c(k?2)?0
初始条件:c(0)=0,c(1)=1。试用迭代法求输出序列c(k),k=0,1,2,3,4。
解 依题有
3
相关推荐: