福建省漳州市2019-2020学年中考数学一模考试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( ) A.y1+y2>0
B.y1﹣y2>0
C.a(y1﹣y2)>0
D.a(y1+y2)>0
2.16的算术平方根是( ) A.4
B.±4
C.2
D.±2
3.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( ) A.1.05×105
B.0.105×10﹣4
C.1.05×10﹣5
D.105×10﹣7
4.下列各数中是无理数的是( ) A.cos60°
B.1.3
·C.半径为1cm的圆周长 D.38
5.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
6.如图,以两条直线l1,l2的交点坐标为解的方程组是( )
A.??x?y?1
?2x?y?1B.??x?y??1
?2x?y??1C.??x?y??1
?2x?y?1D.??x?y?1
?2x?y??17.对于函数y=
1,下列说法正确的是( ) x2B.它的图象过原点 D.y随x的增大而减小
A.y是x的反比例函数 C.它的图象不经过第三象限 8.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形 C.圆的切线垂直于经过切点的半径 D.垂直于同一直线的两条直线互相垂直
9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( ) A.103块
B.104块
C.105块
D.106块
,否则就有危
10.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于险,那么梯子的长至少为( ) A.8米
B.
米
C.
米
D.
米
11.在平面直角坐标系中,二次函数y=a(x–h)2+k(a<0)的图象可能是
A. B.
C. D.
12.下面四个几何体中,左视图是四边形的几何体共有()
A.1个 B.2个 C.3个 D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.
14.化简
12a?2的结果等于__. a?2a?4?15.E是边AB的中点,F在边AD上,FD=2:1,如图,已知在平行四边形ABCD中,且AF:如果AB=a,
?BC=b,那么EF=_____.
???
16.分解因式x2﹣x=_______________________
17.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.
18.计算2x3·x2的结果是_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表: 月份(x) 销售量(p) 1月 3.9万台 2月 4.0万台 3月 4.1万台 4月 4.2万台 5月 4.3万台 6月 4.4万台 (1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
20.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
21.(6分)已知线段a及如图形状的图案.
(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹) (2)当a=6时,求图案中阴影部分正六边形的面积.
22.(8分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=
120(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Qt?4(单位:万元),Q与t之间满足如下关系:Q=??2t?8,0?t?12
??t?44,12?t?24(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元) ①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
23.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=
m的图x象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
24.(10分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(3取1.732,结果取整数)?
相关推荐: