1. 利用形式演绎法证明:{P→Q, R→S, P∨R}蕴涵Q∨S。 2. 设A,B为任意集合,证明:(A-B)-C = A-(B∪C).
3. (本题10分)利用形式演绎法证明:{A∨B, C→B, C→D}蕴涵A→D。 4. (本题10分)A, B为两个任意集合,求证:
A-(A∩B) = (A∪B)-B .
参考答案
一、填空题
1. {3}; {{3},{1,3},{2,3},{1,2,3}}. 2. 2.
n23.
1
= {(a,1), (b,1)}, ,
4
2
= {(a,2), (b,2)},
3
= {(a,1), (b,2)},
4
= {(a,2), (b,1)};
3
.
4. (P∧Q∧R). 5. 12, 3.
6. {4}, {1, 2, 3, 4}, {1, 2}. 7. 自反性;对称性;传递性. 8. (1, 0, 0), (1, 0, 1), (1, 1, 0).
9. {(1,3),(2,2),(3,1)}; {(2,4),(3,3),(4,2)}; {(2,2),(3,3)}. 10. 2
m
n
.
11. {x | -1≤x < 0, xR}; {x | 1 < x < 2, xR}; {x | 0≤x≤1, xR}. 12. 12; 6.
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}. 14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)).
17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}. 二、选择题
1. C. 2. D. 3. B. 4. B. 5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B. 13. A. 14. A. 三、计算证明题 1. (1)
84211263915. D
(2) B无上界,也无最小上界。下界1, 3; 最大下界是3. (3) A无最大元,最小元是1,极大元8, 12, 90+; 极小元是1. = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)}.
(1)
1 4 2 3 ?1?1(2)MR???1??13. (1)?
(2)?(3)?(4)?(5)?
000?100??
110??111?(x)+3=2x+3=2x+3.
=((x))====?
((x))=(x)+3=(x+3)+3=x+6, ((x))=(x)+3=x/4+3, ((x))=(x)/4=2x/4 = x/2, =?(?
)=?
+3=2x/4+3=x/2+3.
4. (1) P(a, f (a))∧P(b, f (b)) = P(3, f (3))∧P(2, f (2))
= P(3, 2)∧P(2, 3) = 1∧0
= 0.
(2) xy P (y, x) = x (P (2, x)∨P (3, x))
= (P (2, 2)∨P (3, 2))∧(P (2, 3)∨P (3, 3)) = (0∨1)∧(0∨1) = 1∧1 = 1.
5. (1)
(2) 无最大(3) B无上
841262元,最小元1,极大元8, 12; 极小元是1.
1 界,无最小上界。下界1, 2; 最大下界2.
6. G = (P→Q)∨(Q∧(P→R)) R)
= (P∧Q∧R)∨(P∧
Q∧
R)∨(P∧Q∧R)∨(P∧Q∧
R)∨(P∧Q∧R)
=
(P∨Q)∨(Q∧(P∨R))
= (P∧Q)∨(Q∧(P∨R)) = (P∧Q)∨(Q∧P)∨(Q∧R) = (P∧
Q∧R)∨(P∧
Q∧
R)∨(P∧Q∧R)∨(P∧Q∧
R)∨(P∧Q∧R)∨(P∧Q∧
= m3∨m4∨m5∨m6∨m7 = (3, 4, 5, 6, 7).
7. G = (xP(x)∨yQ(y))→xR(x)
= = (= (=
(xP(x)∨yQ(y))∨
xR(x)
xP(x)∧yQ(y))∨xR(x)
xP(x)∧yQ(y))∨zR(z) xyz((P(x)∧Q(y))∨R(z))
9. (1) r(R)=R∪IA={(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d)},
s(R)=R∪R={(a,b), (b,a), (b,c), (c,b) (c,d), (d,c)},
t(R)=R∪R∪R∪R={(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,d)}; (2)关系图:
2
3
4
-1
abr(R)dcabs(R)dabt(R)dc c11. G=(P∧Q)∨(P∧Q∧R)
=(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R) =m6∨m7∨m3 =
(3, 6, 7)
H = (P∨(Q∧R))∧(Q∨(P∧R)) =(P∧Q)∨(Q∧R))∨(P∧Q∧R)
=(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R) =(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R) =m6∨m3∨m7 =
(3, 6, 7)
G,H的主析取范式相同,所以G = H.
?1?013. (1)MR???0??0010??0?0010?? MS??001??0??000??0100?011??
000??001?(2)R?S={(a, b),(c, d)},
R∪S={(a, a),(a, b),(a, c),(b, c),(b, d),(c, d),(d, d)}, R-1={(a, a),(c, a),(c, b),(d, c)}, S-1?R-1={(b, a),(d, c)}.
相关推荐: