Á·Ï°Ò»
1£®¶þ´Îº¯Êýy?axµÄͼÏñ¿ª¿ÚÏò£ß£ß£ß£ß£¬¶Ô³ÆÖáÊǣߣߣߣߣ¬¶¥µã×ø±êÊǣߣߣߣߣ¬Í¼ÏñÓÐ×î£ß£ß£ßµã£¬x£ß£ß£ßʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬x£ß£ß£ßʱ£¬yËæxµÄÔö´ó¶ø¼õС¡£
2£®¹ØÓÚy?212x£¬y?x2£¬y?3x2µÄͼÏñ£¬ÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨ £© 3A£®¶¥µãÏàͬ B£®¶Ô³ÆÖáÏàͬ C£®Í¼ÏñÐÎ×´Ïàͬ D£®×îµÍµãÏàͬ 3£®Á½ÌõÅ×ÎïÏßy?xÓëy??xÔÚÍ¬Ò»×ø±êϵÄÚ£¬ÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨ £© A£®¶¥µãÏàͬ B£®¶Ô³ÆÖáÏàͬ C£®¿ª¿Ú·½ÏòÏà·´ D£®¶¼ÓÐ×îСֵ 4£®ÔÚÅ×ÎïÏßy??xÉÏ£¬µ±y£¼0ʱ£¬xµÄȡֵ·¶Î§Ó¦Îª£¨ £© A£®x£¾0 B£®x£¼0 C£®x¡Ù0 D£®x¡Ý0 5£®¶ÔÓÚÅ×ÎïÏßy?xÓëy??xÏÂÁÐÃüÌâÖдíÎóµÄÊÇ£¨ £© A£®Á½ÌõÅ×ÎïÏß¹ØÓÚ
22222xÖá¶Ô³Æ B£®Á½ÌõÅ×ÎïÏß¹ØÓÚÔµã¶Ô³Æ
C£®Á½ÌõÅ×ÎïÏ߸÷×Ô¹ØÓÚyÖá¶Ô³Æ D£®Á½ÌõÅ×ÎïÏßûÓй«¹²µã
26£®Å×ÎïÏßy=£bx£«3µÄ¶Ô³ÆÖáÊǣߣߣߣ¬¶¥µãÊǣߣߣߡ£
7£®Å×ÎïÏßy=£
1(x?2)2£4µÄ¿ª¿ÚÏò£ß£ß£ß£¬¶¥µã×ø±ê£ß£ß£ß£¬¶Ô³ÆÖá£ß£ß£ß£¬x£ß2£ß£ßʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬x£ß£ß£ßʱ£¬yËæxµÄÔö´ó¶ø¼õС¡£
8£®Å×ÎïÏßy?2(x?1)?3µÄ¶¥µã×ø±êÊÇ£¨ £©
A£®£¨1£¬3£© B£®£¨?1£¬3£© C£®£¨1£¬?3£© D£®£¨?1£¬?3£©
9£®ÒÑÖªÅ×ÎïÏߵĶ¥µãΪ£¨?1£¬?2£©£¬ÇÒͨ¹ý£¨1£¬10£©£¬ÔòÕâÌõÅ×ÎïÏߵıí´ïʽΪ£¨ £© A£®y=3(x?1)£2 B£®y=3(x?1)£«2
222C£®y=3(x?1)£2 D£®y=£3(x?1)£2
10£®¶þ´Îº¯Êýy?axµÄͼÏñÏò×óÆ½ÒÆ2¸öµ¥Î»£¬ÏòÏÂÆ½ÒÆ3¸öµ¥Î»£¬ËùµÃк¯Êý±í´ïʽΪ£¨ £©
A£®y=a(x?2)£«3 B£®y=a(x?2)£3 C£®y=a(x?2)£«3 D£®y=a(x?2)£3 11£®Å×ÎïÏßy?x?4x?4µÄ¶¥µã×ø±êÊÇ£¨ £©
A£®£¨2£¬0£© B£®£¨2£¬-2£© C£®£¨2£¬-8£© D£®£¨-2£¬-8£©
12£®¶ÔÅ×ÎïÏßy=2(x?2)£3Óëy=£2(x?2)£«4µÄ˵·¨²»ÕýÈ·µÄÊÇ£¨ £© A£®Å×ÎïÏßµÄÐÎ×´Ïàͬ B£®Å×ÎïÏߵĶ¥µãÏàͬ C£®Å×ÎïÏß¶Ô³ÆÖáÏàͬ D£®Å×ÎïÏߵĿª¿Ú·½ÏòÏà·´
213£®º¯Êýy=ax£«cÓëy=ax£«c(a¡Ù0)ÔÚÍ¬Ò»×ø±êϵÄÚµÄͼÏñÊÇͼÖеģ¨ £©
2222222222
22214£®»¯y?x?4x?3Ϊy=x?4x?3Ϊy?a(x?h)?kµÄÐÎʽÊǣߣߣߣߣ¬Í¼Ïñ
µÄ¿ª¿ÚÏò£ß£ß£ß£ß£¬¶¥µãÊǣߣߣߣߣ¬¶Ô³ÆÖáÊǣߣߣߣߡ£
215£®Å×ÎïÏßy=x?4x£1µÄ¶¥µãÊǣߣߣߣߣ¬¶Ô³ÆÖáÊǣߣߣߣߡ£
16£®º¯Êýy=?12x£«2x£5µÄͼÏñµÄ¶Ô³ÆÖáÊÇ£¨ £© 2A£®Ö±Ïßx=2 B£®Ö±Ïßa=£2 C£®Ö±Ïßy=2 D£®Ö±Ïßx=4 17£®¶þ´Îº¯Êýy=?x2?2x?1ͼÏñµÄ¶¥µãÔÚ£¨ £©
A£®µÚÒ»ÏóÏÞ B£®µÚ¶þÏóÏÞ C£®µÚÈýÏóÏÞ D£®µÚËÄÏóÏÞ 18£®Èç¹ûÅ×ÎïÏßy=x2?6x?cµÄ¶¥µãÔÚxÖáÉÏ£¬ÄÇôcµÄֵΪ£¨ £© A£®0 B£®6 C£®3 D£®9
19£®Å×ÎïÏßy=x2?2mx?m?2µÄ¶¥µãÔÚµÚÈýÏóÏÞ£¬ÊÔÈ·¶¨mµÄȡֵ·¶Î§ÊÇ£¨ £© A£®m£¼£1»òm£¾2 B£®m£¼0»òm£¾£1 C£®£1£¼m£¼0 D£®m£¼£1 20£®ÒÑÖª¶þ´Îº¯Êýy?ax?bx?c£¬Èç¹ûa£¾0,b£¼0,c£¼0£¬ÄÇôÕâ¸öº¯ÊýͼÏñµÄ¶¥µã±ØÔÚ£¨ £©
A£®µÚÒ»ÏóÏÞ B£®µÚ¶þÏóÏÞ C£®µÚÈýÏóÏÞ D£®µÚËÄÏóÏÞ
221£®ÈçͼËùʾ£¬Âú×ãa£¾0,b£¼0µÄº¯Êýy=ax?bxµÄͼÏñÊÇ£¨ £©
2
22£®»³öy?
12x?4x?10µÄͼÏñ£¬ÓÉͼÏñÄãÄÜ·¢ÏÖÕâ¸öº¯Êý¾ßÓÐʲôÐÔÖÊ£¿ 223£®Í¨¹ýÅä·½±äÐΣ¬Ëµ³öº¯Êýy??2x?8x?8µÄͼÏñµÄ¿ª¿Ú·½Ïò£¬¶Ô³ÆÖᣬ¶¥µã×ø±ê£¬Õâ¸öº¯ÊýÓÐ×î´óÖµ»¹ÊÇ×îСֵ£¿Õâ¸öÖµÊǶàÉÙ£¿
24£®¸ù¾ÝÏÂÁÐÌõ¼þ£¬·Ö±ðÇó³ö¶ÔÓ¦µÄ¶þ´Îº¯Êý¹ØÏµÊ½¡£ÒÑÖªÅ×ÎïÏߵĶ¥µãÊÇ£¨¨D1£¬¨D2£©£¬ÇÒ¹ýµã£¨1£¬10£©¡£
25£®ÒÑÖªÒ»¸ö¶þ´Îº¯ÊýµÄͼÏñ¹ýµã£¨0£¬1£©£¬ËüµÄ¶¥µã×ø±êÊÇ£¨8£¬9£©£¬ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ¹ØÏµÊ½¡£
2²Î¿¼´ð°¸
1£®ÉÏ yÖá £¨0£¬0£© µÍ £¾0 £¼0 2£®C 3£®D 4£®C 5£®D 6£®yÖá (0,3)
7£®Ï £¨¨D2£¬¨D4£© x=£2 £¼£2 £¾£2 8£®D 9£®C 10£®D 11£®C 12£®B 13£®B
14£®y=(x?2)£1 ÉÏ (¨D2,¨D1) x=£2 15.(¨D2,¨D5) x=£2 16£®A 17£®B 18£®D 19£®D 20£®D 21£®C 22£®Í¼ÏñÂÔ£¬ÐÔÖÊ£º
£¨1£©Í¼Ïñ¿ª¿ÚÏòÉÏ£¬¶Ô³ÆÖáÊÇÖ±Ïßx=4£¬¶¥µã£¨4£¬2£©¡£ £¨2£©x£¾4ʱ£¬yËæxÔö´ó¶øÔö´ó£¬x£¼4ʱ£¬yËæxÔö´ó¶ø¼õС¡£ £¨3£©x=4ʱ£¬y×îС=2.
2223.y=?2x?8x?8=?2(x?2),¡à¿ª¿ÚÏòÏ£¬¶Ô³ÆÖáx=2£¬¶¥µã£¨2£¬0£©£¬x=2ʱ£¬y×îС2=0
24£®ÉèÅ×ÎïÏßÊÇy=a(x?1)?2£¬½«x=1,y=10´úÈëÉÏʽµÃa=3,
2¡àº¯Êý¹ØÏµÊ½ÊÇy=3(x?1)?2=3x?6x£«1.
22225.½â·¨1£ºÉèy=a(x?8)?9£¬½«x=0,y=1´úÈëÉÏʽµÃa=?1, 82¡ày=?(x?8)?9=?1812x?2x?1 8 Á·Ï°¶þ
Ïà¹ØÍÆ¼ö£º