第一范文网 - 专业文章范例文档资料分享平台

高等数学B2期末考试试卷A卷

来源:用户分享 时间:2025/5/22 20:53:37 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

高等数学B2期末考试试卷A卷

(2010-2011第二学期)

一、填空题(共 5 小题,每题 3 分,共计15 分)

1、设

为 。

2、设a4x?y2z?arcsin(2x)?ln(1?x2?y2),

z的定义域

?(3,5,?2),b?(2,1,4),当?与u满足 时,能使得?a?ub与z轴

垂直。

yz?x(x?0),则dz? 。 3、设

4、设幂级数n?0为 .

?axn?n的收敛半径为2,则幂级数

2?na(x?1)nn?1?n?1的收敛区间

5、已知y?1,y?x,y?x是某二阶非齐次线性微分方程的三个解,则该方程的通解为

二、选择题(共 5 小题,每题 3 分,共计15 分)

1、下列不等式正确的是( )

x?1y?1??(x?1)d??0 (B)

(A)

x2?y2?1??(?x2?y2)d??0

(C)2、将

x?1y?1??(y?1)d??0 (D)

x?1y?1??(x?1)d??0

xoy224x?9y?36绕x轴旋转一周所生成的旋转曲面方程坐标面上的双曲线

为( )

2222224(x?z)?9y?364(x?z)?9y?36 (A) (B)2222224x?9(y?z)?364x?9(y?z)?36 (C) (D)

3、下列级数绝对收敛的是( ) (A)n?1?(?1)?n?1?1n?11(?1)?n3 n (B)n?1n?1n?1n?12(?1)(?1)??ln(n?1)n! (C)n?1 (D)n?1?2??4、极坐标系下的累次积分

为( )

20d??cos?0f(?cos?,?sin?)?d?在直角坐标系下可化

? (A)

10dy?y?y20f(x,y)dx? ; (B)

10dy?1?y20f(x,y)dx ;

dx??(C)

0110f(x,y)dy?; (D)

10dx?x?x20f(x,y)dy 。

???5、方程y?2y?f(x)的特解可设为( )

(A)A,若f(x)?1;

xxf(x)?eAe(B),若;

2432f(x)?x?2x; Ax?Bx?Cx?Dx?E(C),若

(D)x(Asin5x?Bcos5x),若f(x)?sin5x。

三、求与两平面x?4z?3和 2x?y?5z?1的交线平行且过点(?3,2,5)的直线方程。 (本题 6 分)

四、计算下列各题 (共 5小题,每题 5 分,共计 25 分)

x2?y2limx?0221?1?x?y1、y?0。

22、设z?ulnv,而

u?x?z?z,y,v?3x?2y,求?x?y。

?u?u?u,,u?f(x,xy,xyz)f3、设,其中具有一阶连续偏导数,求?x?y?z。

d2xdx42?20?25x?0dt4、求微分方程dt的通解。

?z?z,2sin(x?2y?3z)?x?2y?3z,?x?y。 5、设求

五、求解下列关于幂级数的问题。(共 2 小题,每题 6 分,共计12 分)

2n?n!?nnn?11、用比值审敛法判定级数的敛散性。

?

2、将函数

六、将周长为2p的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少时,才可使圆柱体的体积为最大?(本题 7 分)

七、求解下列关于积分的问题。(共 2 小题,每题 7 分,共计 14分) 1、求二重积分

x??eD2f(x)?1x2?3x?2展开成(x?3)的幂级数。

?y2d?22x?y?1及坐标轴所围成的在第一D,其中是由圆周

象限内的闭区域。

2、计算由四个平面x?0,y?0,x?1,y?1所围成的柱体被平面z?0及

2x?3y?z?6

截得的立体的体积。

八、设f(x)为连续函数,6 分)

F(t)??dy?f(x)dx1ytt'F,证明:(t)?(t?1)f(t)。(本题

搜索更多关于: 高等数学B2期末考试试卷A卷 的文档
高等数学B2期末考试试卷A卷.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8cibq4o98z4n25r6n2ap_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top