第一范文网 - 专业文章范例文档资料分享平台

第二章 点、直线、平面之间的位置关系 单元测试(人教A版必修2)

来源:用户分享 时间:2025/5/28 16:44:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,则一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是( ) A.①和② C.③和④ 答案 D

12.如图,正方体ABCD—A1B1C1D1的棱长为1,线段B1D1上有1

两个动点 E,F,且EF=2,则下列结论错误的是( )

B.②和③ D.②和④

A.AC⊥BE B.EF∥平面ABCD

C.三棱锥A—BEF的体积为定值 D.△AEF的面积与△BEF的面积相等 解析 易证AC⊥平面BB1D1D,∴AC⊥BE. ∵EF在直线B1D1上,易知

B1D1∥面ABCD,∴EF∥面ABCD, 11122

VA-BEF=3×2×2×1×2=24. ∴A、B、C选项都正确,由排除法即选D. 答案 D

5

二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)

13.已知A,B,C,D为空间四个点,且A,B,C,D不共面,则直线AB与CD的位置关系是________.

解析 如图所示:由图知,AB与CD为异面直线.

答案 异面

14.在空间四边形ABCD的边AB,BC,CD,DA上分别取点E,F,G,H,如果EH,FG相交于一点M,那么M一定在直线________上.

答案 BD

15.如图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:

(1)BD与CD的关系为________; (2)∠BAC=________. 解析 (1)AB=AC,AD⊥BC,

6

∴BD⊥AD,CD⊥AD,

∴∠BDC为二面角的平面角,∠BDC=90°, ∴BD⊥DC.

(2)设等腰直角三角形的直角边长为a,则斜边长为2a. 2∴BD=CD=2a. ∴折叠后BC=?2?2?2?2

?a?+?a?=a. ?2??2?

∴折叠后△ABC为等边三角形.∴∠BAC=60°. 答案 (1)BD⊥CD (2)60°

16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.

以上结论正确的为__________.(写出所有正确结论的编号) 解析 如图所示:

∵BE=FD′,ED′=BF,∴四边形BFD′E为平行四边形.∴①正确.

②不正确(∠BFD′不可能为直角).③正确(其射影是正方形ABCD).④正确.当E,F分别是AA′,CC′中点时正确.

7

答案 ①③④

三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)

17.(10分)如图,已知点E,F,G,H分别为正方体ABCD-A1B1C1D1的棱AB,BC,CC1,C1D1的中点,求证:EF,HG,DC三线共点.

证明 ∵点E,F,G,H分别为所在棱的中点,连接BC1,如图.

∴GF是△BCC1的中位线,∴GF∥BC1. ∵BE∥C1H,且BE=C1H,

∴四边形EBC1H是平行四边形. ∴EH∥BC1,∴GF∥EH.

8

GF,

第二章 点、直线、平面之间的位置关系 单元测试(人教A版必修2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8di0z5bf6b8jj329nafg_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top