第一范文网 - 专业文章范例文档资料分享平台

(完整版)金属学与热处理课后习题答案(崔忠圻版)

来源:用户分享 时间:2025/5/24 17:57:30 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

H(1 1 1)=

=√3a/6

面间距最大的晶面为(1 1 0)

1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面

间距大小,并指出面间距最大的晶面。 答:

H(1 0 0)==a/2

H(1 1 0)=

=√2a/4 =√3a/3

H(1 1 1)=

面间距最大的晶面为(1 1 1)

注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:

1、体心立方晶格晶面间距:当指数和为奇数是H=,当指

数和为偶数时H=

2、面心立方晶格晶面间距:当指数不全为奇数是H=,当

指数全为奇数是H=。

1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。 答:

1-7 证明理想密排六方晶胞中的轴比c/a=1.633。 证明:

理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,将各原子中心相连接形成一个正四面体,如图所示:

此时c/a=2OD/BC 在正四面体中:

AC=AB=BC=CD ,OC=2/3CE

所以:

OD2=CD2-OC2=BC2- OC2

OC=2/3CE,OC2=4/9CE2,CE2=BC2-BE2=3/4BC2 可得到OC2=1/3 BC2,OD2= BC2- OC2=2/3 BC2

OD/BC=√6/3

所以c/a=2OD/BC=2√6/3≈1.633

1-8 试证明面心立方晶格的八面体间隙半径r=0.414R,四面体间隙半径

r=0.225R;体心立方晶格的八面体间隙半径:<1 0 0>晶向的r=0.154R,<1 1 0>晶向的r=0.633R,四面体间隙半径r=0.291R。(R为原子半径) 证明:

一、面心立方晶格

二、体心立方晶格

注意:解答此题的关键: 1、要会绘制面心立方晶格和体心立方晶格的八面体间隙和四面体间隙的示意图。

2、间隙半径是指顶点原子至间隙中心的距离再减去原子半径R。

1-9 a)设有一钢球模型,球的直径不变,当有面心立方晶格转变为体心立方晶格时,试计算器体积膨胀。b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转变为α-Fe,试求其体积膨胀,并与a)相比较,说明其差别的原因。 答:

由此可以说明在面心立方晶格向体心立方晶格转变过程中,Fe原子的原子半径发生了变化,并不遵守刚体模型,从而导致实际体积膨胀率要远小于钢球模

型的理论膨胀率。

1-10 已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中

铁和铜的原子数。 解:

已知铁在室温下是体心立方晶格,每个体心立方晶胞共占有2个Fe原子 铜在室温下是面心立方晶格,每个面心立方晶胞共占有4个Cu原子。 已知铁在室温下的晶格常数为0.286nm,

所以每个体心立方晶胞的体积=(0.286)3=0.0234nm3

(完整版)金属学与热处理课后习题答案(崔忠圻版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8djs87nrv75136q5t3t485bn78ar7y00clo_12.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top