最新高考物理动量守恒定律解题技巧(超强)及练习题(含答案)
一、高考物理精讲专题动量守恒定律
1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v向右匀速运动.已知木箱的质量为m,人与车的总质量为2m,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:
(1)推出木箱后小明和小车一起运动的速度v1的大小; (2)小明接住木箱后三者一起运动的速度v2的大小. 【答案】①【解析】
试题分析:①取向左为正方向,由动量守恒定律有:0=2mv1-mv 得v1?2vv;② 23v 22v 3②小明接木箱的过程中动量守恒,有mv+2mv1=(m+2m)v2 解得v2?考点:动量守恒定律
2.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速度v0从右端滑上B,一段时间后,以到达C的最高点.A、B、C的质量均为m.求: (1)A刚滑离木板B时,木板B的速度; (2)A与B的上表面间的动摩擦因数?; (3)圆弧槽C的半径R;
(4)从开始滑上B到最后滑离C的过程中A损失的机械能.
v0滑离B,并恰好能2
2225v0v0v015mv0【答案】(1) vB=;(2)??(3)R?(4)?E?
16gL64g432【解析】 【详解】
(1)对A在木板B上的滑动过程,取A、B、C为一个系统,根据动量守恒定律有:
mv0=m
解得vB=
v0+2mvB 2v0 42?mgL=mv0-m(0)2-?2m(0)2
(2)对A在木板B上的滑动过程,A、B、C系统减少的动能全部转化为系统产生的热量
1212v212v425v0解得??
16gL(3)对A滑上C直到最高点的作用过程,A、C系统水平方向上动量守恒,则有:
mv0+mvB=2mv 2A、C系统机械能守恒:
1v1v1mgR=m(0)2?m(0)2??2mv2
222422v0 解得R?64g(4)对A滑上C直到离开C的作用过程,A、C系统水平方向上动量守恒
mv0mv0??mvA?mvC 24A、C系统初、末状态机械能守恒,
1v021v021212m()?m()?mvA?mvC 222422解得vA=
v0. 42121215mv0 ?E=mv0-mvA=2232所以从开始滑上B到最后滑离C的过程中A损失的机械能为:
【点睛】
该题是一个板块的问题,关键是要理清A、B、C运动的物理过程,灵活选择物理规律,能
够熟练运用动量守恒定律和能量守恒定律列出等式求解.
3.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1
m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10 m/s2.求:
(1)碰后瞬间,圆弧轨道对物体Q的弹力大小FN;
(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;
(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.
?2【答案】(1)FN?4.6?10N (2)B1?1.25T (3)t?127?s,?1?900和?2?1430 360【解析】 【详解】
解:(1)设P碰撞前后的速度分别为v1和v1?,Q碰后的速度为v2 从a到b,对P,由动能定理得:-?m1gl?解得:v1?7m/s
?碰撞过程中,对P,Q系统:由动量守恒定律:m1v1?m1v1?m2v2
11m1v12?m1v02 22取向左为正方向,由题意v1???1m/s, 解得:v2?4m/s
v22b点:对Q,由牛顿第二定律得:FN?m2g?m2
R?2解得:FN?4.6?10N
(2)设Q在c点的速度为vc,在b到c点,由机械能守恒定律:
11m2gR(1?cos?)?m2vc2?m2v22
22解得:vc?2m/s
?2进入磁场后:Q所受电场力F?qE?3?10N?m2g ,Q在磁场做匀速率圆周运动
m2vc2由牛顿第二定律得:qvcB1?
r1Q刚好不从gh边穿出磁场,由几何关系:r1?d?1.6m 解得:B1?1.25T (3)当所加磁场B2?2T,r2?m2vc?1m qB2要让Q从gh边穿出磁场且在磁场中运动的时间最长,则Q在磁场中运动轨迹对应的圆心角最大,则当gh边或ef边与圆轨迹相切,轨迹如图所示:
设最大圆心角为?,由几何关系得:cos(180???)?解得:??127? 运动周期:T?d?r2 r22?m2 qB2则Q在磁场中运动的最长时间:t??360?T?1272?m2127???s 360qB2360?1?90?和?2?143? 此时对应的?角:
4.如图所示,在倾角30°的斜面上放置一个凹撸B,B与斜面间的动摩擦因数??3;槽内6靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d?0.1m,A、B的质量都为m=2kg,B与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A、B之间的摩擦,斜面足够长.现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g取10m/s2.求:
相关推荐: