六、计算与分析题(本题满分共48分。计算结果一律保留三位小数)
1、(本题满分20分)根据某国1955-1974年产出Y(国内生产总值GDP),劳动投入L(总就业人数)以及资本投入K(固定资本存量)的数据,建立柯布—道格拉斯生产函数模型
?K?e? Y?AL利用EViews软件估计模型得:
Dependent Variable: LOG(Y) Method: Least Squares Date: 12/20/13 Time: 17:56 Sample: 1955 1974 Included observations: 20
C LOG(L) LOG(K)
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient -1.652333 0.339717 0.846002
Std. Error 0.606185 0.185687 0.093349
t-Statistic -2.725789 1.829516 9.062816
Prob. 0.0144 0.0849 0.0000 12.22605 0.381497 -4.155281 -4.005921 -4.126124 0.425618
0.995081 Mean dependent var 0.994502 S.D. dependent var 0.028288 Akaike info criterion 0.013604 Schwarz criterion 44.55281 Hannan-Quinn criter. 1719.335 Durbin-Watson stat 0.000000
要求:(1)?,?的经济含义是什么(2分) (2)?,?的取值应该在什么范围内?(2分) (3)写出对数线性回归方程。(3分) (4)解释?,?的经济意义;(2分)
(5)回归模型显著吗(??0.05)?(2分)
(6)检验模型的解释变量的显著性。(??0.05)。(2分)
(7)这组数据是什么类型的数据,该模型可能违背哪些经典假定?(2)
有人怀疑因存在劳动力过剩,劳动投入L对产出Y影响不显著,舍弃了变量L,估计模型为:
Dependent Variable: LOG(Y) Method: Least Squares
- 5 -
Date: 12/20/13 Time: 17:57 Sample: 1955 1974 Included observations: 20
C LOG(K)
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient -0.618380 1.013827
Std. Error 0.233092 0.018391
t-Statistic -2.652943 55.12752
Prob. 0.0162 0.0000 12.22605 0.381497 -4.075554 -3.975981 -4.056117 0.302066
0.994112 Mean dependent var 0.993785 S.D. dependent var 0.030076 Akaike info criterion 0.016282 Schwarz criterion 42.75554 Hannan-Quinn criter. 3039.043 Durbin-Watson stat 0.000000
续问(8)舍弃变量L是否合理?说出你的理由?(F0.10(1,17)=3.026) (3分)
(9)变量L不显著的原因可能是?(2分)
2、(本题满分6分)为了评估收入和获得保健对生命预期的影响,我们收集了85个国家的数据,以生命预期Y为被解释变量,收入X1和获得保健指标X2为解释变量,建立线性回归模型,估计结果如下:
Dependent Variable: Y
C X1 X2
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 39.43802 0.000542 0.283303
Std. Error 1.948595 0.000122 0.028444
t-Statistic 20.23921 4.441731 9.959961
Prob. 0.0000 0.0000 0.0000 63.13412 10.54996 6.121008 6.207219 6.155684 1.983983
0.774146 Mean dependent var 0.768637 S.D. dependent var 5.074547 Akaike info criterion 2111.584 Schwarz criterion -257.1428 Hannan-Quinn criter. 140.5332 Durbin-Watson stat 0.000000
因怀疑模型存在异方差,又做了如下检验:
Dependent Variable: ABS(E) Method: Least Squares Date: 12/20/13 Time: 18:17 Sample: 1 85
- 6 -
Included observations: 85
C X1
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 4.674458 -0.000193
Std. Error 0.406342 5.68E-05
t-Statistic 11.50374 -3.407481
Prob. 0.0000 0.0010 3.847013 3.187822 5.060845 5.118319 5.083963 2.277118
0.122723 Mean dependent var 0.112153 S.D. dependent var 3.003745 Akaike info criterion 748.8663 Schwarz criterion -213.0859 Hannan-Quinn criter. 11.61093 Durbin-Watson stat 0.001013
最后根据检验结果估计了如下模型:
Dependent Variable: Y/X1 Method: Least Squares Date: 12/20/13 Time: 18:21 Sample: 1 85
Included observations: 85
1/X1 C X2/X1
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 40.48373 0.005548 0.173764
Std. Error 0.971429 0.001288 0.020211
t-Statistic 41.67439 4.306671 8.597460
Prob. 0.0000 0.0000 0.0000 0.082965 0.081094 -6.747215 -6.661004 -6.712539 2.106877
0.990143 Mean dependent var 0.989902 S.D. dependent var 0.008149 Akaike info criterion 0.005445 Schwarz criterion 289.7567 Hannan-Quinn criter. 4118.366 Durbin-Watson stat 0.000000
(1)模型是否存在异方差?(2分)
(2)作上述异方差检验的前提假设是什么?(2分) (3)写出修正后的模型。(2分)
3、(本题满分6分)根据美国1980-2006年间股票价格Y和GDP数据,估计回归模型:
Dependent Variable: Y
- 7 -
Method: Least Squares Date: 12/20/13 Time: 18:31 Sample: 1980 2006 Included observations: 27
Coefficient Std. Error t-Statistic Prob. C -2015.220 306.2978 -6.579283 0.0000 GDP
0.772295
0.039570
19.51704
0.0000 R-squared 0.938411 Mean dependent var 3497.937 Adjusted R-squared 0.935947 S.D. dependent var 2431.348 S.E. of regression 615.3416 Akaike info criterion 15.75342 Sum squared resid 9466132. Schwarz criterion 15.84941 Log likelihood -210.6712 Hannan-Quinn criter. 15.78196 F-statistic 380.9149 Durbin-Watson stat 0.428497 Prob(F-statistic) 0.000000
(1)模型是否存在一阶序列相关?(dL=1.32,dU=1.47)(2分) (2)如果存在一阶序列相关,那么一阶自相关系数约为多少?(2分)
(3)如果进一步做下述检验,你能确定模型存在几阶序列相关吗?(??0.05)(分)
Breusch-Godfrey Serial Correlation LM Test: F-statistic
36.01304 Prob. F(2,23)
0.0000 Obs*R-squared
20.46495 Prob. Chi-Square(2)
0.0000
Test Equation:
Dependent Variable: RESID Method: Least Squares
Date: 12/20/13 Time: 18:32 Sample: 1980 2006 Included observations: 27
Presample missing value lagged residuals set to zero.
Coefficient Std. Error t-Statistic Prob. C -32.40132 157.1554 -0.206174 0.8385 GDP 0.005938 0.020308 0.292376 0.7726 RESID(-1) 1.275419 0.162998 7.824732 0.0000 RESID(-2)
-0.653418
0.163421 -3.998380 0.0006
- 8 -
2
相关推荐: