11lim(1?1x1x??2x)?limx??(1?2x)2x?2?e2
?1⒋若函数f(x)???(1?x)x,x?0,在x?0处连续,则k? e .
??x?k,x?0分析:分段函数在分段点x0处连续?limf?x??limf?x??f?x0?
x?x0?x?x0?xlim?0?f?x??limx?0??x?k??0?k?k1 所以k?e
xlim?0?f?x??limx?0??1?x?x?e⒌函数y??1,x?0??x?sinx,x?0的间断点是 x?0(为第一类间断点). 分析:间断点即定义域不存在的点或不连续的点
初等函数在其定义域范围内都是连续的
分段函数主要考虑分段点的连续性(利用连续的充分必要条件)
xlim?0?f?x??limx?0??x?1??0?1?1不等,所以x?0为其间断点
xlim?0?f?x??xlim?0?sinx?0⒍若limf(x)?A,则当x?x0时,f(x)?A称为无穷小量 .
x?x0分析:limx?x(f(x)?A)?limx?xf(x)?limA?A?A?0
00x?x0 所以f(x)?A为x?x0时的无穷小量
(三)计算题
⒈设函数
x)???exf(,x?0?x,x?0
求:f(?2),f(0),f(1).
解:f??2???2,f?0??0,f?1??e1?e
⒉求函数y?lg2x?1x的定义域.
?2x?1?解:y?lg2x?1?x?0???1x有意义,要求?解得?x?或x?0
??x?0?2??x?0?
5
则定义域为?x|x?0或x???1?? 2?⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:
设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R (其中,AB为梯形上底,下底CD与半园直径重合,O为园心,E为AB中点)
直角三角形AOE中,利用勾股定理得
AE?OA2?OE2?R2?h2 则上底AB=2AE?2R2?h2 故S?h2??2R?2R2?h2??h?R?R2?h2?
⒋求limsin3xx?0sin2x. (第4,5,6,7,9的极限还可用洛贝塔法则做)
sin3x?3xsin3x解:limsin3x3xx?0sin2x?limx?0sin2x?lim3xsin2x?3=121?32?32
2x?2xx?02x2⒌求limx?1sin(x?1).
x??1解:limx2?1sin(x?1)?(x?1)(x?1)?1??1?1?x??1limx??1sin(x?1)limx?x??1sin(x?1)1?2
x?1⒍求limtan3xx?0x.
解:limtan3x?limsin3xx?0xx?0x?1sin3x11cos3x?lim??3?1??3?3
x?03xcos3x1⒎求lim1?x2?1.
x?0sinx222解:lim1?x?1?lim(1?x?1)(1?x?1)2?limxx?0sinxx?0(1?x2?1)sinxx?0(1?x2?1)sinx ?limxx?0?0(1?x2?1)sinx?1?1??1?0
x 6
⒏求lim(x??x?1x?3).
x11x1?x?1?(1?解:limx?11xx)[(1?)]1x??(x?3)x?limxx??()?limx3?lim?x?e?1?3??(1?xx??1x33e3?e?4
xx)[(1?x)]32⒐求limx?6x?84x2.
x??5x?42解:limx?6x?8x?2?2x?4x2?5x?4?lim?x?4??x?4?x?4??x?1??limx?x?4x?1?4?24?1?23
⒑设函数
?(x?2)2,x?1f(x)???x,?1?x?1
??x?1,x??1讨论f(x)的连续性,并写出其连续区间. 解:分别对分段点x??1,x?1处讨论连续性 (1)
xlim??1?fx??xlim??1?x??1xlim??1?f?x??xlim??1?? x?1???1?1?0所以lim1?f?x??xlim??1?f?x?,即f?x?在x??1x??处不连续 (2)
22xlim?1?f?x??limx?1??x?2???1?2??1limf?x??
x?1?xlim?1?x?1f?1??1所以lim?f?x??limx?1?f?x??f?1?即f?x?在x?1x?1处连续 由(1)(2)得f?x?在除点x??1外均连续 故f?x?的连续区间为???,?1????1,???
7
相关推荐: