第一范文网 - 专业文章范例文档资料分享平台

2018年广西省北部湾经济区六市同城中考数学试卷(解析版)

来源:用户分享 时间:2025/6/6 9:35:18 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴∠OCB=30°, ∴

=,

=

x,

∴可设EF=x,则EC=2x、FC=∴BF=8

x,

在Rt△BEF中,BE2=EF2+BF2, ∴100=x2+(8解得:x=6±∵6+∴x=6﹣

﹣,

x)2,

>8,舍去,

)=2

﹣4.

∴EC=12﹣2

∴OE=8﹣(12﹣2

【点评】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质等知识点.

26.(10.00分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当△CMN是直角三角形时,求点M的坐标; (3)试求出AM+AN的最小值.

【分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;

(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣

m)=m+1,由于∠MCN=∠OCB,根据相似三角形的判定方法,当△CMN∽△COB,于是有∠CMN=∠COB=90°,即△CMN∽△CBO,于是有∠CNM=∠COB=90°,即的值即可得到M点的坐标;

==

;当

==

时,时,

,然后分别求出m

(3)连接DN,AD,如图,先证明△ACM≌△DBN,则AM=DN,所以AM+AN=DN+AN,利用三角形三边的关系得到DN+AN≥AD(当且仅当点A、N、D共线时取等号),然后计算出AD即可.

【解答】解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得解得

∴抛物线解析式为y=﹣x2+x+4; ∵AC=BC,CO⊥AB, ∴OB=OA=3, ∴B(3,0),

∵BD⊥x轴交抛物线于点D, ∴D点的横坐标为3,

当x=3时,y=﹣×9+×3+4=5, ∴D点坐标为(3,5); (2)在Rt△OBC中,BC=

=

=5,

设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1, ∵∠MCN=∠OCB, ∴当m=当m=

=

时,△CMN∽△COB,则∠CMN=∠COB=90°,即

);

=

,解得=

,解得

,此时M点坐标为(0,=

时,△CMN∽△CBO,则∠CNM=∠COB=90°,即

);

,此时M点坐标为(0,

综上所述,M点的坐标为(0,(3)连接DN,AD,如图, ∵AC=BC,CO⊥AB, ∴OC平分∠ACB, ∴∠ACO=∠BCO, ∵BD∥OC, ∴∠BCO=∠DBC,

∵DB=BC=AC=5,CM=BN, ∴△ACM≌△DBN, ∴AM=DN,

∴AM+AN=DN+AN,

)或(0,);

而DN+AN≥AD(当且仅当点A、N、D共线时取等号), ∴DN+AN的最小值=∴AM+AN的最小值为

=.

【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

2018年广西省北部湾经济区六市同城中考数学试卷(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8kd9v8hev997tl37kuug5o77k30e1i00qu7_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top