第一范文网 - 专业文章范例文档资料分享平台

2020年专升本考试大纲(高数一二三)备课讲稿 

来源:用户分享 时间:2025/5/15 20:03:46 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2020纲年专升本考试大高数一二三)

(精品文档

山东省2020年普通高等教育专科升本科招生考试 公共基础课考试要求

山东省教育招生考试院

二○二○年一月

收集于网络,如有侵权请联系管理员删除

精品文档

高等数学Ⅰ考试要求

Ⅰ. 考试内容与要求

本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。主要考查学生识记、理解和应用能力,为进一步学习奠定基础。具体内容与要求如下:

一、函数、极限与连续

(一)函数

1.理解函数的概念,会求函数的定义域、表达式及函数值,会建立应用问题的函数关系。

2.理解和掌握函数的有界性、单调性、周期性和奇偶性。 3.了解分段函数和反函数的概念。 4.掌握函数的四则运算与复合运算。

5.理解和掌握基本初等函数的性质及其图形,了解初等函数的概念。 (二)极限

1.理解极限的概念,能根据极限概念描述函数的变化趋势。理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系,

x趋于无穷大(x???,x???,x??)时函数的极限。

2.了解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。理解极限存在的两个收敛准则(夹逼准则与单调有界准则),熟练掌握利用两个重要极限limsinx1?1,lim(1?)x?e求函数的极限。 x?0x??xx3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会用等价无穷小量求极限。

收集于网络,如有侵权请联系管理员删除

精品文档

(三)连续

1.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

2.掌握连续函数的性质。

3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理),并会应用这些性质。

4.理解初等函数在其定义区间上连续,并会利用连续性求极限。

二、一元函数微分学

(一)导数与微分

1.理解导数和微分的概念,了解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,理解函数的可导性与连续性之间的关系。

2.熟练掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。

3.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

4.理解高阶导数的概念,会求简单函数的n阶导数。 5.掌握微分运算法则,会求函数的一阶微分。 (二)中值定理及导数的应用

1.理解罗尔中值定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明简单的不等式。

0?2.熟练掌握洛必达法则,会用洛必达法则求“0”,“?”,

“0??”,“???”,“1”,“0”和“?”型未定式的极限。

?00收集于网络,如有侵权请联系管理员删除

精品文档

3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,会利用函数的单调性证明一些简单的不等式,掌握函数最大值和最小值的求法及其应用。

4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平渐近线与垂直渐近线。

三、一元函数积分学

(一)不定积分

1.理解原函数与不定积分概念,了解原函数存在定理,掌握不定积分的性质。

2.熟练掌握不定积分的基本公式。

3.掌握不定积分的第一、第二换元法和分部积分法。 4.了解一些简单有理函数的不定积分的求法。 (二)定积分

1.理解定积分的概念与几何意义,了解可积的条件。 2.掌握定积分的基本性质。

3.理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式。 4.掌握定积分的换元积分法与分部积分法。

5.掌握用定积分表达和计算一些几何量(平面图形的面积、旋转体的体积、平行截面面积为已知的立体体积)。

收集于网络,如有侵权请联系管理员删除

2020年专升本考试大纲(高数一二三)备课讲稿 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8lcvx2ssch8xzko02xoc4ddq3430jm00yah_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top