精 品 文 档
11C522C5C55C522P(??0)?2?,P(??1)?2?,P(??2)?2?,
C109C109C109所以?的分布列为
? P 数学期望为E??0?0 1 2 2 95 92 9252?1??2??1. 999(3)设xi,yi(i?1,2,3,4)分别表示工作年限及相应年薪,则x?2.5,y?6,
?(x?x)i14i42?2.25?0.25?0.25?2.25?5
(-2)?(-0.5)?(-0.5)?0.5?0?1.5?2.5?7 ?(x?x)(y?y)??1.5?ii?1??b?(i?1nxi?x)(yi?y)?(i?1n?xi?x)27?1.4 5??6?1.4?2.5?2.5, ??y?bxa得线性回归方程:y?1.4x?2.5.
可预测该员工第5年的年薪收入为9.5万元. 20.【解析】
(1)设动圆的半径为r,则CF2?r,CF1?4?r,所以CF1?CF2?4?F1F2, 由椭圆的定义知动圆圆心C的轨迹是以F1,F2为焦点的椭圆,a?2,c?1,所以b?3,x2y2??1. 动圆圆心C的轨迹方程是43(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得MN?4,PQ?4,四边形
PMQN的面积S?8.
当直线MN斜率存在时,设其方程为y?k(x?1)(k?0),联立方程得
试 卷
精 品 文 档
?y?k(x?1)2222,消元得kx?(2k?4)x?k?0 ?2?y?4x4??x1?x2?2?2设M(x1,y1),N(x2,y2),则? k??x1x2?1MN?1?k2(442?2)?4??4 k2k21(x?1), k∵PQ?MN,∴直线PQ的方程为y??1?y??(x?1)??k222(3k?4)x?8x?4?12k?0 ,得?22?x?y?1?3?48?x?x?34??3k2?4设P(x3,y3),Q(x4,y4),则? 24?12k?xx?12?3k2?4?184?12k212(k2?1)2 PQ?1?2(2)?42?k3k?43k?43k2?411412(k2?1)(k2?1)2)?2422四边形PMQN的面积S?MNPQ?(2?4)(,
22k3k2?4k(3k?4)21??t??1t233?, ?24??令k?1?t,t?1,上式S?24?(t?1)(3t?1)3(t?1)(3t?1)????2令2t?1?z,(z?3),
?????????2t?1?z4S?8?1??81??81??z?33z?1??? ?1?(t?1)(3t?1)????3(z?)?10???22??z?1101,∴3(z?)?10?0,∴S?8(1?0)?8, z??(z?3)
z3z综上可得S?8,最小值为8. 21.【解析】
(1)f(x)的定义域为(0,??)
试 卷
精 品 文 档
1x2?(a?1)x?2(a?1)(x?2)?x?(a?1)?f(x)?x?(a?1)?2(a?1)?? xxx'(x?2)2?0,f(x)在(0,??)上单调递增; ①若a?1?2,则a?3,f(x)?x'②若a?1?2,则a?3,而a?1,∴1?a?3,
当x?(a?1,2)时,f(x)?0;当x?(0,a?1)及(2,??)时f(x)?0, 所以f(x)在(a?1,2)上单调递减,在(0,a?1)及(2,??)单调递增;
③若a?1?2,则a?3,同理可得f(x)在(2,a?1)上单调递减,在(0,2)及(a?1,??)单调递增.
(2)假设存在a,对任意x1,x2?(0,??),x1?x2,有
''f(x1)?f(x2)?a?0恒成立,
x1?x2不妨设0?x1?x2,只要
f(x2)?f(x1)?a?0,即f(x2)?ax2?f(x1)?ax1,
x2?x1令g(x)?f(x)?ax,只要g(x)在(0,??)上为增函数,
g(x)?12x?x?2(a?1)lnx 2219(x?)2?2a?2(a?1)x?x?2(a?1)24 g'(x)?x?1???xxx只要g(x)?0在(0,??)恒成立,只要2a?'99?9??0,a?,故存在a??,???时,对任意48?8?x1,x2?(0,??),x1?x2,有
(3)由题意知,
f(x1)?f(x2)?a?0恒成立.
x1?x213h(x)?[x2?(a?1)x?2(a?1)lnx]?[?x2?x?(4?2a)lnx]?2lnx?x2?ax
222h(x1)?2lnx1?x12?ax1?0,h(x2)?2lnx2?x2?ax2?0
两式相减,整理得2lnx2?(x1?x2)(x1?x2)?a(x2?x1),所以 x1试 卷
精 品 文 档
x22x1a??(x2?x1),又因为h'(x)??2x?a,
xx2?x12lnx2?32x?x2xx6221)??(2x1?x2)?a??[ln2?1]?(x1?x2) 所以h'(132x1?x23x2?x1x12?x23x13令t?(t?1)(t?4)x23t?3'?0, ?(1,4),?(t)?lnt?,则?(t)?x1t?2t(t?2)2所以?(t)在(1,4)上单调递减,故?(t)??(1)?0 又?212x?x?0,?(x1?x2)?0,所以h'(12)?0
x2?x13322.【解析】
?3y?(x?1)3?(x?1),C1的普通方程x2?y2?1,(1)l的普通方程y?联立方程组?33?x2?y2?1?解得l与C1的交点为A(1,0),B(?,?123),则AB?3 21?x?cos??132?sin?),(2)C2的参数方程为?(?为参数),故点P的坐标是(cos?,22?y?3sin???213cos??sin??122从而点P到直线l的距离是?2sin(???)?1时,d取得最大值,且最大值为
23.【解析】
10sin(???)?122,由此当
101?. 42(1)由题意,得f(x)?f(x?1)?x?3?x?2,因此只须解不等式x?3?x?2?2 当x?2时,原不等式等价于?2x?5?2,即
3?x?2, 2当2?x?3时,原不等式等价于1?2,即2?x?3;
试 卷
相关推荐: