中考数学——平行四边形的综合压轴题专题复习及答案
一、平行四边形
1.(1)、动手操作:
如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点∠ABE=20°,那么(2)、观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
的度数为 .
处,折痕为EF,若
(3)、实践与运用:
将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大
小.
【答案】(1)125°;(2)同意;(3)60° 【解析】
试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;
(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;
(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可. 试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°, ∴∠AEB=70°, ∴∠BED=110°,
根据折叠重合的角相等,得∠BEF=∠DEF=55°. ∵AD∥BC,
∴∠EFC=125°,
再根据折叠的性质得到∠EFC′=∠EFC=125°.; (2)、同意,如图,设AD与EF交于点G
由折叠知,AD平分∠BAC,所以∠BAD=∠CAD. 由折叠知,∠AGE=∠DGE=90°, 所以∠AGE=∠AGF=90°, 所以∠AEF=∠AFE. 所以AE=AF,
即△AEF为等腰三角形.
(3)、由题意得出:∠NMF=∠AMN=∠MNF, ∴MF=NF,
由折叠可知,MF=PF, ∴NF=PF,
而由题意得出:MP=MN, 又∵MF=MF, ∴△MNF≌△MPF,
∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°, 即3∠MNF=180°, ∴∠MNF=60°.
考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定
2.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2. 【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值. 试题解析:(1)解:如图1,
∵PE=BE, ∴∠EBP=∠EPB. 又∵∠EPH=∠EBC=90°, ∴∠EPH-∠EPB=∠EBC-∠EBP. 即∠PBC=∠BPH. 又∵AD∥BC, ∴∠APB=∠PBC. ∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH, 又∵∠A=∠BQP=90°,BP=BP, 在△ABP和△QBP中,
?APB??BPH{?A??BQP?90?, BP?BP
相关推荐: