1 1 1 ÕýÊÓͼ 1 ²àÊÓͼ £¨ £©
A£® B£® C£® D£®
10¡¢Éèf(n)?2?24?27?210?213???23n?10(n?N)£¬Ôòf(n)µÈÓÚ£¨ £©
A£®
2n222(8?1) B£®(8n?4?1) C£®(8n?3?1) D£®(8n?1?1)
777711¡¢ÒÑÖªÆ½ÃæÇøÓòÈçÓÒͼËùʾ£¬z?mx?y(m?0)ÔÚÆ½ÃæÇøÓòÄÚÈ¡µÃ×î´óÖµµÄ×îÓŽâÓÐÎÞÊý¶à¸ö£¬ÔòmµÄֵΪ £®£®£®£®£®£®£®£®
713y £¨ £© A£® B£® C£® D£®²»´æ
202 C(1,6) 4ÔÚ A(5,3)
o B(1,1) x 12¡¢ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄµÈ²îÊýÁÐ?an?µÄǰ119ÏîºÍΪ2018£¬ÄÇôa2?a118µÄ×´ó£®Öµ£®ÊÇ
£¨ £©
A£®220
B£® 100 C£®25 D£®50
¶þ¡¢Ìî¿ÕÌ⣨±¾´óÌâ¹²4СÌ⣬ÿСÌâ5·Ö£¬Âú·Ö20·Ö.
Çë°Ñ´ð°¸ÌîÔÚ´ðÌ⿨ÉÏ.£© £®£®£®£®£®£®£®£®£®£®
13¡¢Éèx?0,y?0ÇÒx?2y?1£¬Çó11?µÄ×îСֵ £» xy214¡¢ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a2,a18ÊÇ·½³Ìx?6x?1?0µÄÁ½¸ù£¬Ôòa7?a8?a9?a10?a11?a12?a13?_______£»
15¡¢¹ýµãP(3,6)ÇÒ±»Ô²x?y?25½ØµÃÏÒ³¤Îª8µÄÖ±ÏßÒ»°ã·½³ÌÊÇ £» £®£®£®£®
16¡¢£¨Àí¿Æ×ö£©ÈôÖ±Ïßx?y?m?0ÓëÇúÏßx?1?y2ûÓй«¹²µã£¬ £®£®£®£®£®
Ôòmȡֵ·¶Î§ÊÇ_________¡£
£¨ÎÄ¿Æ×ö£©ÔÚÕýÈýÀâÖùABC?A1B1C1ÖУ¬²àÀⳤΪ2£¬µ×ÃæÈý½ÇÐα߳¤Îª1£¬
ÔòBC1Óë²àÃæACC1A1Ëù³É½ÇÊÇ ¡£
Èý¡¢½â´ðÌâ(±¾´óÌâ¹²ÁùСÌ⣬Âú·Ö70·Ö.
22½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè.) £®£®£®£®£®£®£®£®£®£®£®£®£®£®£®£®£®£®£®
17¡¢£¨±¾Ð¡Ìâ10·Ö£©ÒÑÖªA¡¢B¡¢CΪ?ABCµÄÈýÄڽǣ¬ÇÒÆä¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ ÈôcosBcosC?sinBsinC?£¨¢ñ£©ÇóA£»
£¨¢ò£©Èôc?b,a?21,S?ABC?3£¬Çób,c£®
18¡¢£¨±¾Ð¡Ìâ12·Ö£©
£¨1£©ÒÑÖªx??1£¬±È½Ïx3?1Óëx2?xµÄ´óС£¬²¢ËµÃ÷xΪºÎֵʱ£¬ÕâÁ½¸öʽ×ÓÏàµÈ.
£¨2£©½â¹ØÓÚxµÄ²»µÈʽx2?ax?6a2?0,ÆäÖÐa?0. 19¡¢£¨±¾Ð¡Ìâ12·Ö£©
ÈçͼËùʾ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪÕý·½ÐΣ¬PA¡ÍÆ½ÃæABCD£¬µã EÔÚÏß¶ÎPCÉÏ£¬Éè
P P
A D B A
C E D 1£® 2PE ??£¬PA?AB£®
ECE C B
Àí ¿Æ Í¼ ÎÄ ¿Æ ͼ £¨I£© Ö¤Ã÷£ºBD¡ÍPC£»
(II)£¨Àí¿Æ×ö£©£¨2£©µ±?ΪºÎֵʱ£¬PC¡ÍÆ½ÃæBDE£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Çó¶þÃæ½ÇB-PC-AµÄÆ½Ãæ½Ç´óС¡£
£¨ÎÄ¿Æ×ö£©µ±?=1ʱ£¬Æ½ÃæBDE·Ö´ËÀâ׶ΪÁ½²¿·Ö£¬ÇóÕâÁ½²¿·ÖµÄÌå»ý±È¡£ 20¡¢£¨±¾Ð¡Ìâ12·Ö£©
ÒÑÖªÔ²ÐÄÔÚÖ±Ïßx?y?4?0ÉÏ£¬ÇÒÓëÖ±Ïß
21¡¢£¨±¾Ð¡Ìâ12·Ö£©
ÖÆ¶¨Í¶×ʼƻ®Ê±£¬²»½öÒª¿¼ÂÇ¿ÉÄÜ»ñµÃµÄÓ¯Àû£¬¶øÇÒÒª¿¼ÂÇ¿ÉÄܳöÏֵĿ÷Ëð.ijͶ×ÊÈË´òËãͶ×ʼס¢ÒÒÁ½¸öÏîÄ¿. ¸ù¾ÝÔ¤²â£¬¼×¡¢ÒÒÏîÄ¿¿ÉÄܵÄ×î´óÓ¯ÀûÂÊ·Ö±ðΪ200©‡ºÍ100©‡£¬¿ÉÄܵÄ×î´ó¿÷Ëð·Ö±ðΪ30©‡ºÍ10©‡. Ͷ×ÊÈ˼ƻ®Í¶×ʽð¶î²»³¬¹ý10ÍòÔª£¬ÒªÇóÈ·±£¿ÉÄܵÄ×ʽð¿÷Ëð²»³¬¹ý1.8ÍòÔª. ÎÊͶ×ÊÈ˶Լס¢ÒÒÁ½¸öÏîÄ¿¸÷Ͷ×ʶàÉÙÍòÔª£¬²ÅÄÜʹ¿ÉÄܵÄÓ¯Àû×î´ó£¿×î´óÖµÊǶàÉÙ£¿
l:4x?3y?6?0ÏàÇÐÓÚµãA(3,6)£¬Çó´ËÔ²µÄ·½³Ì¡£
22¡¢£¨±¾Ð¡Ìâ12·Ö£©ÒÑÖªÊýÁÐ?an?ÊǵȲîÊýÁУ¬ÇÒa1??2,a1?a2?a3??12. £¨1£©ÇóÊýÁÐ?an?µÄͨÏʽ£»
£¨2£©£¨Àí¿Æ×ö£©Èôb1?0,bn?1?7bn?6,n?N?£¬
ÇóÊýÁÐ?an(bn?1)?µÄǰnÏîºÍTnµÄ¹«Ê½.
£¨ÎÄ¿Æ×ö£©ÁîCn?anxn(x?R,x?0),ÇóÊýÁÐ?Cn?ǰnÏîºÍSnµÄ¹«Ê½.
323218¡¢½â£¨1£©?x3?1?(x2?x)= x?1?x?x=x?x?x?1
=x2(x?1)?(x?1)=(x?1)2?(x?1)?x??1£¬?(x?1)2?0£¬(x?1)?0
?x3?1?(x2?x)?0£¬x3?1?(x2?x)£¬µ±ÇÒ½öµ±x??1ʱ£¬µÈºÅ³ÉÁ¢¡£
£¨2£©?x2?ax?6a2?0,ÆäÖÐa?0?(x?3a)(x?2a)?0
?a?0,3a??2a£¬?x?3a»òx??2a
?Ô²»µÈʽµÄ½â¼¯ÊÇ{xx?3a»òx??2a}
19¡¢£¨1£©Ò×Ö¤ £¨2£©Àí¿Æ£¨2£©??2 £¨3£©60
ÎĿƣ¨2£©Ìå»ý±È3:1
20¡¢½â£ºÉèÔ²ÐÄΪC,ÔòCA?l£¬ÔòCAµÄ·½³ÌΪy?6??(x?3)£¬¼´3x?4y?33?0
034ÓÖCÔÚÖ±Ïßx?y?4?0ÉÏ£¬½â·½³Ì×é??3x?4y?33?0?x?7£¬µÃ?
?x?y?4?0?y?3°ë¾¶ÎªCA?5£¬ËùÇóÔ²µÄ·½³ÌΪ(x?7)2?(y?3)2?25
Ïà¹ØÍÆ¼ö£º