第一范文网 - 专业文章范例文档资料分享平台

弹性力学基础(程尧舜 - 同济大学出版社)课后习题解答

来源:用户分享 时间:2025/6/1 10:37:10 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

习题解答

第二章

2.1计算:(1)?pi?iq?qj?jk,(2)epqieijkAjk,(3)eijpeklpBkiBlj。 解:(1)?pi?iq?qj?jk(2)epqieijkAjk

2.2证明:若aij(3)eijpeklpBkiBlj??pq?qj?jk??pj?jk??pk;

?(?ik?jl??il?jk)BkiBlj?BiiBjj?BjiBij。

?(?pj?qk??pk?qj)Ajk?Apq?Aqp;

?aji,则eijkajk?0。

证:2eijkajk?eijkajk?eikjakj?eijkajk?eijkakj?eijkajk?eijkajk?0。

2.3设a、b和c是三个矢量,试证明:

a?aa?ba?cb?ab?bb?c?[a,b,c]2 c?ac?bc?ca?aa?ba?caiaiaibiaicia1a2a3a1b1c12证:b?ab?bb?c?biaibibibici?b1b2b3a2b2c2?[a,b,c]。

c?ac?bc?cciaicibicicic1c2c3a3b3c3

2.4设a、b、c和d是四个矢量,证明:

(a?b)?(c?d)?(a?c)(b?d)?(a?d)(b?c)

证:(a?b)?(c?d)?aibjeijkek?cldmelmnen?aibjcldmeijkelmk ?aibjcldm(?il?jm??im?jl)?(aici)(bjdj)?(aidi)(bjcj) ?(a?c)(b?d)?(a?d)(b?c)。

zz'2.5设有矢量u?uiei。原坐标系绕z轴转动?角度,得到新坐标系,如图2.4所示。试求矢量u在新坐标系中的分量。 解:?1?1?cos?,?1?2?sin?,?1?3?0, ?2?1??sin?,?2?2?cos?,?2?3?0, ?3?1?0,?3?2?0,?3?3?1。 u1???1?iui?u1cos??u2sin?,

y'ox?x'图2.4?y1

u2???2?iui??u1sin??u2cos?,

u3???3?iui?u3。

2.6设有二阶张量T?Tijei?ej。当作和上题相同的坐标变换时,试求张量T在新坐标系

中的分量T1?1?、T1?2?、T1?3?和T3?3?。 解:变换系数同上题。

T1?1???1?i?1?jTij?T11?T222?T11?T222cos2??T12?T212sin2?, T1?2??T12?T21?T12?T21T?T22cos2??22112sin2?,

T1?3??T13cos??T23sin?, T3?3??T33。

2.7设有3n个数Ai1i2???in,对任意m阶张量Bj1j2???jm,定义

Ci1i2???inj1j2???jm?Ai1i2???inBj1j2???jm

若Ci1i2???inj1j2???jm为n?m阶张量,试证明

Ai1i2???in是n阶张量。

证:为书写简单起见,取n?2,m?2,则 Cijkl?AijBkl,

在新坐标系中,有

Ci?j?k?l??Ai?j?Bk?l? (a)

因为Cijkl和Bkl是张量,所以有

Ci?j?k?l???i?i?j?j?k?k?l?lCijkl??i?i?j?jAij?k?k?l?lBkl??i?i?j?jAijBk?l?

比较上式和式(a),得

(Ai?j???i?i?j?jAij)Bk?l??0

由于B是任意张量,故上式成立的充要条件是 Ai?j???i?i?j?jAij

即Aij是张量。 2.8设

A为二阶张量,试证明I??A?trA。

证:I??A?ei?ei??Ajkej?ek=Ajk(ei?ej)(ei?ek)=Ajk?ij?ik=Aii=trA。

2.9设a为矢量,A为二阶张量,试证明:

2

(1)a?A??(AT?a)T,(2)A?a??(a?AT)T 证:(1) ?(AT?a)T??(Ajiei?ej?akek)T??(Ajiei?akejknen)T

??Ajnakejkiei?en

??(Ajiakejknei?en)T (2) ?(a?AT)T ?akek?Ajnej?en?a?A。

??(aiei?Akjej?ek)T??(Akjaieijnen?ek)T

??(Anjaieijken?ek)?Anjen?aiejikek

?Anjen?ej?aiei?A?a

2.10已知张量T具有矩阵

?123? [T]??456?

?789??? 求T的对称和反对称部分及反对称部分的轴向矢量。

解:T的对称部分具有矩阵

?135?1 ([T]?[T]T)??357?, 2?579??? T的反对称部分具有矩阵

?0?1?2?1 ([T]?[T]T)??10?1?。 2?210??? 和反对称部分对应的轴向矢量为 ω?e1?2e2?e3。

2.11已知二阶张量T的矩阵为

?3?10?[T]???130?

?001???求T的特征值和特征矢量。

3???10解:?13??0?(1??)[(3??)2?1]?0

001??由上式解得三个特征值为?1?4,?2?2,?3?1。

将求出的特征值代入书中的式(2.44),并利用式(2.45),可以求出三个特征矢量为

3

a1?11(e1?e2),a?(e1+e2),a3?e3。 22

2.12求下列两个二阶张量的特征值和特征矢量:

A??I??m?m,B?m?n?n?m

其中,?和?是实数,m和n是两个相互垂直的单位矢量。 解:因为

A?m?(?I??m?m)?m?(???)m,

所以m是A的特征矢量,??? 是和其对应的特征值。设a是和m垂直的任意单

位矢量,则有

A?a?(?I??m?m)?a??a

所以和m垂直的任意单位矢量都是征方程的重根。 令 e2?则有

A的特征矢量,相应的特征值为?,显然?是特

11(m?n),e3?(m?n),e1=e2?e3 2222(e2+e3),n?(?e2+e3) 22上面定义的ei是相互垂直的单位矢量。张量B可以表示成 B?0e1?e1?e2?e2+e3?e3

所以,三个特征值是1、0和-1,对应的特征矢量是e3、e1和e2。

m?

2.13设a和b是矢量,证明:

(1)??(??a)??(??a)??2a

(2)??(a?b)?b?(?a)?a?(?b)?a(??b)?b(??a)

证:(1) 这一等式的证明过程和书中证明式(2.14)的过程相同,在此略。 (2) ??(a?b)?ei???(ajej?bkek)?ei?(ajbkejkmem) ?xi?xi ?(aj,ibk?ajbk,i)ejkmeimnen?(aj,ibk?ajbk,i)(?jn?ki??ji?kn)en ?aj,ibiej?ajbi,iej?aj,jbkek?aibk,iek ?b?(?a)?a?(?b)?a(??b)?b(??a)

2.14设a?x2yze1?2xz3e2?xz2e3,求w?1(a???a)及其轴向矢量。 24

弹性力学基础(程尧舜 - 同济大学出版社)课后习题解答.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8naxq2b2ih0vngk58yua7wp9920czo00zso_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top