8.形如an?1?pan?qan?1(其中p,q为常数)型
(1)当p+q=1时 用转化法
例1.数列{an}中,若a1?8,a2?2,且满足an?2?4an?1?3an?0,求an.
(2)当p2?4q?0时 用待定系数法.
例2. 已知数列{an}满足an?2?5an?1?6an?0,且a1?1,a2?5,且满足,求an.
r9. 形如an?1?pan(其中p,r为常数)型
(1)p>0,an?0 用对数法. (2)p<0时 用迭代法.
2例1. 设正项数列?an?满足a1?1,an?2anan?的通项公式. ?1(n≥2).求数列?
例2已知数列{an}的各项都是正数,且满足:a0?1,an?1?1an(4?an),n?N, 2(1)证明an?an?1?2,n?N; (2)求数列{an}的通项公式an.
练习:
1.(2014全国大纲卷.文17)数列{an}满足a1?1,a2?2,an?2?2an?1?an?2. (Ⅰ)设bn?an?1?an,证明{bn}是等差数列; (Ⅱ)求{an}的通项公式;
2.(全国II)设等比数列?an?的前n项和为Sn,S4?1,S8?17,求通项公式an
3.(全国卷I)已知?an?为等比数列,a3?2,a2?a4?
4.(安徽卷)在等差数列?an?中,a1?1,前n项和Sn满足条件
求数列?an?的通项公式;
20,求?an?的通项式。 3S2n4n?2?,n?1,2,Snn?1,
5.(辽宁卷)已知等差数列?an?的前n项和为Sn?pn2?2a?q(p,q?R),n?N求q的值;
6.(全国卷I)设数列?an?的前n项的和Sn?通项an;
7.(福建卷)已知数列{an}满足a1=1,an?1=2an+1(n∈N)求数列{an}的通项公式;
8.(福建卷)已知数列?an?满足a1?1,a2?3,an?2?3an?1?2an(n?N*).
(I)证明:数列?an?1?an?是等比数列;(II)求数列?an?的通项公式;
?412an??2n?1?,n?1,2,3,333求首项a1与
9.(江西卷)已知数列{an}满足:a1=
33nan-1,且an= (n?2,n?N?)22an-1+n-1求数列{an}的通项公式;
a1?10.(山东卷)已知数列{an}中,
1,点(n,2an?1?an)在直线y=x上,其中n=1,2,3?. 2(Ⅰ)令bn?an?1?an?3,求证数列(Ⅱ)求数列?an? ?bn?是等比数列;的通项;
相关推荐: