2014年中考数学复习计划
1、弧长公式
n°的圆心角所对的弧长l的计算公式为l?2、扇形面积公式
n?r 180S扇?n1?R2?lR 3602其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。 3、圆锥的侧面积
S?1l?2?r??rl 2其中l是圆锥的母线长,r是圆锥的地面半径。 。
考点四、中心对称 (3分) 1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 考点五、坐标系中对称点的特征 (3分) 1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y) 2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
中考数学常用公式及性质
1. 乘法与因式分解
b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ①(a+b)(a-b)=a2-b2;②(a±
④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。 2. 幂的运算性质 a=a①a×⑥a-n=
m
n
m+n
a=a;②a÷
mnm-n
anan;③(a)=a;④(ab)=ab;⑤()=n;
bbmn
mn
n
nn
1-nn0
n,特别:()=();⑦a=1(a≠0)。 a第 21 页 共 24 页
21
2014年中考数学复习计划
(4).求抛物线的顶点、对称轴的方法
b4ac?b2b?4ac?b2?(?,) ①公式法:y?ax?bx?c?a?x???,∴顶点是,对称轴是
2a4a2a?4a?22直线x??b。 2a2 ②配方法:运用配方的方法,将抛物线的解析式化为y?a?x?h??k的形式,得到顶点为
(h,k),对称轴是直线x?h。
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点
是顶点。
若已知抛物线上两点(x1,y)、,则对称轴方程可以表示为:x?(x2,y)(及y值相同)
2y?ax?bx?c中,a,b,c的作用 (5).抛物线
x1?x2 2 ①a决定开口方向及开口大小,这与y?ax2中的a完全一样。
②b和a共同决定抛物线对称轴的位置.由于抛物线y?ax2?bx?c的对称轴是直线。
bbx??,故:①b?0时,对称轴为y轴;②?0(即a、b同号)时,对称轴在y轴
a2ab左侧;③?0(即a、b异号)时,对称轴在y轴右侧。
a ③c的大小决定抛物线y?ax2?bx?c与y轴交点的位置。
当x?0时,y?c,∴抛物线y?ax2?bx?c与y轴有且只有一个交点(0,c): ①c?0,抛物线经过原点; ②c?0,与y轴交于正半轴;③c?0,与y轴交于负半轴.
b 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则 ?0。
a(6).用待定系数法求二次函数的解析式
①一般式:y?ax2?bx?c.已知图像上三点或三对x、y的值,通常选择一般式. ②顶点式:y?a?x?h??k.已知图像的顶点或对称轴,通常选择顶点式。
2 ③交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y?a?x?x1??x?x2?。 (7).直线与抛物线的交点
①y轴与抛物线y?ax2?bx?c得交点为(0, c)。 ②抛物线与x轴的交点。
二次函数y?ax2?bx?c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程
ax2?bx?c?0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别
式判定:
a有两个交点?(??0)?抛物线与x轴相交;
b有一个交点(顶点在x轴上)?(??0)?抛物线与x轴相切; c没有交点?(??0)?抛物线与x轴相离。 ③平行于x轴的直线与抛物线的交点
第 22 页 共 24 页
22
2014年中考数学复习计划
同②一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,
设纵坐标为k,则横坐标是ax2?bx?c?k的两个实数根。
④一次函数y?kx?n?k?0?的图像l与二次函数y?ax2?bx?c?a?0?的图像G的交点,由
方程组
y?kx?ny?ax?bx?c2的解的数目来确定:
a方程组有两组不同的解时?l与G有两个交点; b方程组只有一组解时?l与G只有一个交点; c方程组无解时?l与G没有交点。
⑤抛物线与x轴两交点之间的距离:若抛物线y?ax2?bx?c与x轴两交点为
A?x1,0?,B?x2,0?,则AB?x1?x2
3. 频率与概率 (1)频率
频率=频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各
总数个小长方形的面积为各组频率。
(2)概率
①如果用P表示一个事件A发生的概率,则0≤P(A)≤1; P(必然事件)=1;P(不可能事件)=0;
②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值; 4. 平面直角坐标系中的有关知识
(1)对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。
(2)坐标平移:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b-h).如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1)。 5. 多边形内角和公式
多边形内角和公式:n边形的内角和等于(n-2)180o(n≥3,n是正整数),外角和等于360o6. 圆的有关性质
(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;
③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径。 (2)两条平行弦所夹的弧相等。
第 23 页 共 24 页
23
2014年中考数学复习计划
(3)圆心角的度数等于它所对的弧的度数。
(4)一条弧所对的圆周角等于它所对的圆心角的一半。 (5)圆周角等于它所对的弧的度数的一半。 (6)同弧或等弧所对的圆周角相等。
(7)在同圆或等圆中,相等的圆周角所对的弧相等。
(8)90o的圆周角所对的弦是直径,反之,直径所对的圆周角是90o,直径是最长的弦。、 (9)圆内接四边形的对角互补。 7. 三角形的内心与外心
(1)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点。 (2)三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点. 常见结论:①Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径r?1S?lr2 ②△ABC的周长为l,面积为S,其内切圆的半径为r,则
a?b?c; 28. 面积公式 ①S正△=
×(边长)2.
②S平行四边形=底×高.
(对角线的积), ③S菱形=底×高=×
1④S梯形?(上底?下底)?高?中位线?高
2⑤S圆=πR2.
⑥l圆周长=2πR. ⑦弧长L= ⑧S扇形.
n?r21??lr 3602⑨S圆柱侧=底面周长×高=2πrh, S全面积=S侧+S底=2πrh+2πr2 ⑩S圆锥侧=×底面周长×母线=πrb, S全面积=S侧+S底=πrb+πr2
第 24 页 共 24 页 24
相关推荐: