f(t)?e?(t?2)?ee所以
?3t?6?3(t?2)e?6?2s?(t?2)?F(s)?es?3
5s?45s?4e?6?2s111111Yf(s)?2F(s)?2?e?e?6[6??]e?2ss?22s?12s?3s?3s?2s?3s?2s?3
由e??(t?2)?(t?2)?1?2ss??e可得
yf(t)?e?6[6e?2(t?2)?0.5e?(t?2)?5.5e?3(t?2)]?(t?2)2.(1)由图A-52可知,输入端求和器的输出为
zX2(z)?F(z)?3X2(z)?2X1(z) X1(z)?z?1X2(z) 式(2)代入式(1)得
X2(z)?1z?3?2z?1F(z) 输出端求和器的输出为
Y(z)?(z?4)Xz?42(z)?z?3?2z?1F(z) 即 (z?3?2z?1)Y(z)?(z?4)F(z)或
(1?3z?1?2z?2)Y(z)?(1?4z?1)F(z)因此系统的差分方程为
y(k)?3y(k?1)?2y(k?2)?f(k)?4f(k?1)(2)对上述差分方程取单边z变换得
Y(z)?3[z?1Y(z)?y(?1)]?2[z?2Y(z)?z?1y(?1)?y(?2)]?(1?4z?1)F(z)整理得
(z)?3y(?1)?2z?1y(?1)?2y(?2)1?3z?1?2z?2?1?4z?1Y1?3z?1?2z?2F(z)?Yx(z)?Yf(z)因此
Yz)?3y(?1)?2z?1y(?1)?2y(?2)2z?1?75z1?3z?1?2z?2?1?3z?1?2z?2?z?1?12zx(z?2取z反变换得
yx(k)?(5?12?2k)?(k)
因为
f(k)?4k?(k)?zz?4,所以 Y1?4z?15zz52zf(z)?1?3z?1?2z?2F(z)??3z?1?12z?2?3z?4取z反变换得
y(?552f(k)?3?12?2k?3?4k)?(k)全响应为
y(k)?(103?523?4k)?(k)
(1)
(2)
(3)
(4)
(3)由系统函数的定义可得
取z反变换得系统单位冲激响应为
1?4z?1zzH(z)????5?6F(z)1?3z?1?2z?2z?1z?2
h(k)?(?5?6?2k)?(k)
Yf(z)(4)由式(1)、(2)可得系统的状态方程为
即
?x1(k?1)?x2(k)??x2(k?1)??2x1(k)?3x2(k)?f(k) ?x1(k?1)??01??x1(k)??0??x(k?1)????23??x(k)???1?f(k)??2????2??
由式(4)可得系统的输出方程为 或
y(k)?x2(k?1)?4x2(k)??2x1(k)?7x2(k)?f(k)
?x(k)?y(k)???27??1??f(k)?x2(k)?
2?3?0???T02。傅立叶级数系数为 3.(1)因为T0?4/3,所以
?j?nt3332f(t)edt??(t)edt?2?4??34
?33?3F(j?)?2??Fn?(???n)????(???n)22n???2n???(2)
1Fn?T0T02T?023?j?nt223(3)因为H(j?)?g4?(?)e此,有
3?j?2,所以只有频率为
??2?的信号分量才能通过系统,因
3
?j?333Y(j?)?F(j?)H(j?)??[?(???)??(?)??(???)]g4?(?)e2222
99j??j?33333??[?(???)g4?(??)e4??(?)g4?(0)??(???)g4?(?)e4]22222
??j?j3334??[?(???)e??(?)??(???)e4]222 323332333??[?(???)??(???)]??j[?(???)??(???)]???(?)4224222 1333cos(?t)??(???)??(???)222 因为?1333sin(?t)??(???)??(???)j?222 1??(?)2?
因此,有
y(t)?32333[cos(?t)?sin(?t)]?4224
相关推荐: