1x?2?t,2? (t为参数),代入因为直线l过点A?2,2?且倾斜角为,所以直线l的参数方程为{33y?2?t,2x2y231??1中可得: t2?8?183t?16?0, 944??所以由韦达定理: t1?t2??b32?723c64??, t1t2??, a31a31t1?t2AP4?1932所以. ??AM?ANt1t21623.(Ⅰ){x|x?1,或x?5};(Ⅱ)a?3.
?2x?6,x?2解析:(Ⅰ)当a?2时, f?x??x?4?{2,2?x?4
2x?6,x?4当x?2时,由
f?x??4?x?4得?2x?6?4,解得x?1, f?x??4?x?4无解,
当2?x?4时, 当x?4时,由所以
f?x??4?x?4得2x?6?4,解得x?5,
f?x??4?x?4的解集是{x|x?1,或x?5},
?2a,x?0(Ⅱ)记h?x??f?2x?a??2f?x?,则h?x??{4x?2a,0?x?a
2a,x?a由h?x??2解得
a?1a?1,又已知h?x??2的解集为{x|1?x?2}, ?x?22a?1?12所以{ 于是a?3. a?1?22
9
相关推荐: