1.(本题满分14分)设数列?an?的前n项和为Sn,且Sn?4an?3(n?1,2,L), (1)证明:数列?an?是等比数列;
(2)若数列?bn?满足bn?1?an?bn(n?1,2,L),b1?2,求数列?bn?的通项公式.
2.(本小题满分12分)
等比数列?an?的各项均为正数,且2a1?3a2?1,a32?9a2a6. 1.求数列?an?的通项公式.
?1?2.设 bn?log3a1?log3a2?......?log3an,求数列??的前项和.
?bn?
3.设数列?an?满足a1?2,an?1?an?3g22n?1 (1) 求数列?an?的通项公式; (2) 令bn?nan,求数列的前n项和Sn
4.已知等差数列{an}的前3项和为6,前8项和为﹣4.
(Ⅰ)求数列{an}的通项公式;
﹣
(Ⅱ)设bn=(4﹣an)qn1(q≠0,n∈N*),求数列{bn}的前n项和Sn.
5.已知数列{an}满足,
(1)令bn=an+1﹣an,证明:{bn}是等比数列; (2)求{an}的通项公式.
,n∈N×.
1.解:(1)证:因为Sn?4an?3(n?1,2,L),则Sn?1?4an?1?3(n?2,3,L),
所以当n?2时,an?Sn?Sn?1?4an?4an?1, 整理得an?4 5分 an?1.3由Sn?4an?3,令n?1,得a1?4a1?3,解得a1?1. 所以?an?是首项为1,公比为分
4(2)解:因为an?()n?1,
34的等比数列. 73
4由bn?1?an?bn(n?1,2,L),得bn?1?bn?()n?1. 9分
3由累加得bn?b1?(b2?b`1)?(b3?b2)???(bn?bn?1)
41?()n?143=2?(n?2), ?3()n?1?1,
431?34当n=1时也满足,所以bn?3()n?1?1.
31。有条件9232?9a2a6得a3?9a42.解:(Ⅰ)设数列{an}的公比为q,由a3所以q2?1可知a>0,故q?。
311由2a1?3a2?1得2a1?3a2q?1,所以a1?。故数列{an}的通项式为an=n。
33(Ⅱ )bn?log1a1?log1a1?...?log1a1
??(1?2?...?n) n(n?1)??2故
1211????2(?) bnn(n?1)nn?1111111112n??...???2((1?)?(?)?...?(?))?? b1b2bn223nn?1n?1
相关推荐: