学习-----好资料
带电粒子在复合场中的运动
一、带电粒子在复合场中的运动
1、复合场的分类
(1)叠加场:电场、磁场、重力场共存,或其中某两场共存。
(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现。
2、带电粒子在复合场中的运动分类
(1)静止或匀速直线运动
当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。 (2)匀速圆周运动
当带电粒子所受的重力与电场力大小相等、方向相反时(即:Eq=mg),带电粒子在洛伦兹力的作
v2用下,在垂直于匀强磁场的平面内做匀速圆周运动(即: m)。
r(3)非匀变速曲线运动
当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。 (4)分阶段运动
带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。
二、带电粒子在复合场中运动的实例分析
1、速度选择器
E
(1) 带电粒子能够沿直线匀速通过速度选择器的条件是qE=qvB,即v=
B(2)平行板中电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出来。只选择速度,与粒子的正负和带电量无关。
2、质谱仪
(1)构造:如图所示,由粒子源、加速电场、速度选择器、偏转磁场
和照相底片等构成。
(2)原理:
1
①粒子由静止在加速电场中被加速:qU=mv2。
2
O
更多精品文档
学习-----好资料
E
②粒子在速度选择器中,进行速度筛选。凡是速度满足v=,才能顺利进入偏转磁场。
B③粒子进入偏转磁场,受洛伦兹力偏转,做匀速圆周运动。
mvv2
根据牛顿第二定律得关系式qvB=m 得出:r?
rBq由图可知:op=L?2r=
q2v2mv? 得出:
BqmBL3、回旋加速器
(1)构造:如图所示,D1、D2是半圆金属盒,D形盒的缝隙处接交流
电源。D形盒处于匀强磁场中。
(2)原理:粒子从D1型盒中心附近射出。经过D形盒缝隙间的电场
加速,获得一定的速度后,进入D2型盒区域,发生偏转(半圆)后,再次进入电场,电场反向,粒子再次被加速后,再次进入D1型盒区域,发生偏转(半圆)。此过程交替进行,粒子最终从D型盒边界射出。
mv2mv由qvB=得:r?
RBq
当粒子圆周运动的半径为D型盒半径R时,速度最大 q2B2R2
则:Ekmax=,
2m
特点:①交流电的周期和粒子做匀速圆周运动的周期相等。
②粒子获得的最大动能由磁感应强度B和D形盒半径R决定,与加速电压无关。
4、磁流体发电机
(1)等离子体:等离子体是由部分电子被剥夺后的原子及原子团被
电离后产生的正负离子组成的离子化气体状物质。
(2 )根据左手定则,如图中的B板是发电机正极。
(3) 原理:等离子体中的正、负离子,在洛伦兹力的作用下横向偏转,A、B间出现电势差,形成电场。
当正、负离子所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定。磁流体发电机两极板间的距离为d,等离子体速度为v,磁场的磁感应强度为B,
更多精品文档
学习-----好资料
则由qE=qvB得:E=Bv
进而得出:两极板间能达到的稳定的电势差U=Bvd
5、电磁流量计
工作原理:如图所示,圆形导管直径为d,用非磁性材料制成,导电液体在管中向左流动,导电液体
中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定,即: UUπd2UπdU
qvB=qE=q,所以v=,因此液体流量Q=Sv=·=。
dBd4Bd4B
更多精品文档
相关推荐: