菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,(1)求图象过点B的反比例函数的解析式; (2)求图象过点A,B的一次函数的解析式;
).
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.
25.(13.00分)(2018?滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF; (2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.
26.(14.00分)(2018?滨州)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B. (1)当x=2时,求⊙P的半径;
(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 的距离等于到 的距离的所有点的集合.
(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.
2018年山东省滨州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分)
1.(3.00分)(2018?滨州)在直角三角形中,若勾为3,股为4,则弦为( ) A.5
B.6
C.7
D.8
【分析】直接根据勾股定理求解即可.
【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为故选:A.
【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
2.(3.00分)(2018?滨州)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( )
A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2
D.(﹣2)﹣2
=5.
【分析】根据数轴上两点间距离的定义进行解答即可. 【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2). 故选:B.
【点评】本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.
3.(3.00分)(2018?滨州)如图,直线AB∥CD,则下列结论正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
【解答】解:如图,∵AB∥CD, ∴∠3+∠5=180°, 又∵∠5=∠4, ∴∠3+∠4=180°, 故选:D.
【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
4.(3.00分)(2018?滨州)下列运算:①a2?a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为( ) A.1
B.2
C.3
D.4
【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可. 【解答】解:①a2?a3=a5,故原题计算错误; ②(a3)2=a6,故原题计算正确; ③a5÷a5=1,故原题计算错误; ④(ab)3=a3b3,故原题计算正确; 正确的共2个, 故选:B.
【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.
5.(3.00分)(2018?滨州)把不等式组条数轴上表示出来,正确的为( )
中每个不等式的解集在同一
相关推荐: