(1)证明:平面AED⊥平面A1FD1;
(2)在AE上求一点M,使得A1M⊥平面DAE.
解 (1)证明:建立如图所示的空间直角坐标系D-xyz,不妨设正方体的棱长为2,则A(2,0,0),E(2,2,1),F(0,1,0),A1(2,0,2),D1(0,0,2).
设平面AED的法向量为n1=(x1,y1,z1),则
???→?DE=?n·
1
→n1·DA=
x1,y1,z1x1,y1,z1
·2,0,0·2,2,1
=0,=0.
??2x1=0,∴? ??2x1+2y1+z1=0.
令y1=1,得n1=(0,1,-2).
同理可得平面A1FD1的法向量n2=(0,2,1). ∵n1·n2=0,∴平面AED⊥平面A1FD1. (2)由于点M在AE上,
→→
∴可设AM=λAE=λ(0,2,1)=(0,2λ,λ), →
可得M(2,2λ,λ),于是A1M=(0,2λ,λ-2). 要使A1M⊥平面DAE,需A1M⊥AE,
→→
2
∴A1M·AE=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=.
5
242
故当AM=AE时,即点M坐标为(2,,)时,A1M⊥平面DAE.
555
相关推荐: