Systems(Second Edition) —Learning Instructions (Exercises Answers)
Department
ComputerEngineering
2005.12
ContentsChapter 17Chapter 35Chapter 62Chapter 83Chapter 109Chapter 119Chapter 132Chapter 140Chapter 10 160 Answers1.1 Converting from polar Cartesiancoordinates: 1.2converting from Cartesian polarcoordinates: limlim dtdt =cos(t).Therefore, limlim dtdt limlim limcos shiftedsignal shiftedsignal
flippedsignal
flippedsignal
newSignal
flippedsignal newsignal flippedsignal right.Therefore, weknow t>-2.Similarly,
x(2-t)
t>-1,Therefore,
(1-t)+x(2-t)
linearlycompression Therefore,x(3t) linearlycompression
Therefore,x(3t) periodicbecause fundamentalperiod FigureS1.6. Therefore, fundamentalperiod oddsignal, allvalues zerowhen zeroonly
when
periodiccomplex
multiplied
exponential.
10
10
complexexponential Therefore,
decayingexponential. complexexponential fundamentalperiod
periodicsignal.
periodicsignal.
fundamentalperiod
Weobtain fundamentalperiod complexexponential =3/5.We cannot find any integer integer.Therefore, periodic.1.10. x(t)=2cos(10t+1)-sin(4t-1)
Period
firstterm
firstterm
overallsignal periodwhich leastcommon multiple secondterms. -3-1 -1-2 -3 -3-3 firstterm secondterm secondterm
overallsignal periodwhich leastcommon Multiple threeterms inn 35.1.12. figureS1.12. flippedsignal right.Therefore, no=-3.1.13 itsderivative FigureS1.14. Therefore [n-3]=2x [n-2]+4x [n-3]+4x
[n-4])=2x
[n-2]+5x
input-outputrelationship
y[n]=2x[n-2]+5x [n-3] 2x[n-4] input-outputrelationship does connectedseries reversed. Wecan easily prove [n-3])+4(x input-outputrelationship onceagain y[n]=2x[n-2]+ 5x [n-3] 2x[n-4] 1.16 memoryless because pastvalues wemay conclude systemoutput alwayszero causalbecause sometime may depend futurevalues Considertwo arbitrary inputs (sin(t))Let linearcombination
arbitraryscalars
givensystem
correspondingoutput linear.1.18.(a) Consider two arbitrary inputs
linearcombination
arbitraryscalars.
givensystem, arbitraryinput
.Consider
secondinput
correspondingoutput correspondingoutput
outputcorresponding Alsonote +1)B.Therefore +1)B.1.19 Considertwo arbitrary inputs (t-1)Let linearcombination arbitraryscalars. givensystem, correspondingoutput linear.(ii) Consider arbitraryinputs correspondingoutput .Consider secondinput outputcorresponding Alsonote Considertwo arbitrary inputs [n-2].Let linearcombination arbitraryscalars. givensystem,
correspondingoutput
linear.(ii)
Consider
arbitraryinput correspondingoutput .Consider secondinput outputcorresponding Alsonote Considertwo arbitrary inputs -1]Let
linearcombination
arbitraryscalars.
Consider
givensystem, arbitraryinput secondinput
correspondingoutput correspondingoutput
linear.(ii)
.Consider
outputcorresponding Alsonote Considertwo arbitrary inputs linearcombination correspondingoutput correspondingoutput outputcorresponding
arbitraryscalars. linear.(ii)
Consider
givensystem, arbitraryinputs secondinput Thereforex1
.Consider
Alsonote
systemliner
weknow x2(t)=cos(2(t-1/2))= linearityproperty, we may once again write x1 cos(3t-1)Therefore, x1 (t)=cos(2(t-1/2)) =cos(3t-1)1.21.The signals figureS1.21. Figure S1.21 1.22 figureS1.22 1.23 oddparts FigureS1.23 1/2-1/2 -1 0.50.5 3/2-3/2 x(2t+1)x(4-t/2) 1012 1/2-1/2 -1 1/2-1/2 1/2-1 -2 1/2-1 -2 1/2-1 -2 FigureS1.22 -4-1 -2 -7xo[n] 3t/2-3t/2 -1/2-7 FigureS1.24 -2 FigureS1.23 1/2 1/2-7 1/2-1 3/2-3/2 -1/2 101.24 oddparts FigureS1.24
相关推荐: