全等三角形
一、选择题
1. (2020·新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF 【考点】全等三角形的判定.
【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案. 【解答】解:∵∠B=∠DEF,AB=DE,
∴添加∠A=∠D,利用ASA可得△ABC≌△DEF; ∴添加BC=EF,利用SAS可得△ABC≌△DEF; ∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF; 故选D.
【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.
2. (2020·云南)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BD B.∠CAB=∠DBA 【考点】全等三角形的判定.
C.∠C=∠D D.BC=AD
【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案. 【解答】解:由题意,得∠ABC=∠BAD,AB=BA,
A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误; B、在△ABC与△BAD中,
,△ABC≌△BAD(ASA),故B正确;
C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;
D、在△ABC与△BAD中,故选:A.
,△ABC≌△BAD(SAS),故D正确;
【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角 3. (2020·四川广安·3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等
⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定.
【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.
【解答】解:①错误,理由:钝角三角形有两条高在三角形外.
②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.
③正确,有一组邻边相等的平行四边形是菱形.
④错误,理由两边及一角对应相等的两个三角形不一定全等.
⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.
正确的只有③, 故选A.
4.(2020?浙江省舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )
A. B. C.1 D.
【考点】矩形的性质;全等三角形的判定与性质;勾股定理.
AB∥CD,推出四边形AECF【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,
是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到于是得到AE=AF,列方程即可得到结论.
【解答】解:过F作FH⊥AE于H, ∵四边形ABCD是矩形, ∴AB=CD,AB∥CD, ∵AE∥CF,
∴四边形AECF是平行四边形, ∴AF=CE, ∴DE=BF, ∴AF=3﹣DE, ∴AE=
,
,
∵∠FHA=∠D=∠DAF=90°,
∴∠AFH+∠HAF=∠DAE+∠FAH=90°, ∴∠DAE=∠AFH, ∴△ADE∽△AFH, ∴
,
∴AE=AF, ∴
∴DE=, 故选D.
=3﹣DE,
二、填空题
1. (2020·四川成都·4分)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120° .
【考点】全等三角形的性质.
【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可. 【解答】解:∵△ABC≌△A′B′C′,
相关推荐: