??(??1,??1),??(??2,??2).由
消去??,得(3?4k)x?4kx?11?0.
22由直线??过椭圆内一点作直线故Δ>0,由求根公式得:
x1?x2?由得
?4k?11,x?x?,1222
3?4k3?4k,得直线得
与
斜率和为零.故
111kx1??mkx2??m2kx1x2?(?m)(x1?x2)y1?my2?m222?????0, x1x2x1x2x1x21?111?4k4k(m?6)2kx1x2?(?m)(x1?x2)?2k??(?m)???0. 22223?4k23?4k3?4k存在定点(0,6),当斜率不存在时定点(0,6)也符合题意.
x21.(Ⅰ)f'(x)?e?2x, 由题设得f'(1)?e?2,f(1)?e?1,
在
处的切线方程为y?(e?2)x?1.
xxf'(x)?e?2xf''(x)?e?2,∴f'(x)在(0,ln2)上单调递减,在(ln2,??)上,(Ⅱ)
单调递增,所以
f'(x)?f'(ln2)?2?2ln2?0,所以f(x)在[0,1]上单调递增,
f(x)过点(1,e?1),且y?f(x)在x?1处的切线
f(x)的图象恒在切线
所以f(x)max?f(1)?e?1,x?[0,1].
方程为y?(e?2)x?1,故可猜测:当x?0,x?1时,
y?(e?2)x?1的上方.
下证:当x?0时,
f(x)?(e?2)x?1,
xx设g(x)?f(x)?(e?2)x?1,x?0,则g'(x)?e?2x?(e?2),g''(x)?e?2,
g'(x)在(0,ln2)上单调递减,在(ln2,??)上单调递增,又
g'(0)?3?e?0,g'(1)?0,0?ln2?1,∴g'(ln2)?0,
所以,存在x0?(0,1n2),使得g'(x0)?0,
所以,当x?(0,x0)?(1,??)时,g'(x)?0;当x?(x0,1)时,g'(x)?0,故g(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,??)上单调递增, 又g(0)?g(1)?0,∴g(x)?ex?x2?(e?2)x?1?0,当且仅当x?1时取等号,故
ex?(2?e)x?1?x,x?0.
xex?(2?e)x?1?lnx?1,当x?1时,等号成立. 又x?lnx?1,即
x22.解:(Ⅰ)由直线??过点A可得2cos????????a,故a?2, 44??则易得直线??的直角坐标方程为x?y?2?0
根据点到直线的距离方程可得曲线C1上的点到直线l的距离
d?2cosa?3sina?22?7?sina????22,sin??2217,cos?, 77?dmax?7?214?22 ?223?, 4(Ⅱ)由(1)知直线??的倾斜角为
则直线??1的参数方程为
3?x??1?tcos?,??4f(x)??(t为参数).
3?y?1?tsin?,??4x2y2??1. 又易知曲线??1的普通方程为43把直线??1的参数方程代入曲线??1的普通方程可得72t?72t?5?0, 2?10 7?t1t2??10,依据参数t的几何意义可知BM?BN?t1t27aaaa23.解:(Ⅰ)f(x)?x?1?2可化为|x?|?x?1?1.Q|x?|?x?1??1??1?1,2222
解得:a?0或a?4.?实数a的取值范围为(??,0]U[4,??).
aa(Ⅱ)函数f?x??2x?a?x?1的零点为和1,当a?2时知?1.
22a ???3x?a?1,(x?2),?a??f(x)??x?a?1,(?x?1),2??3x?a?1,(x?1),??如图可知f(x)在(??,)单调递减,在[,??)单调递增,
aa?f(x)min?f()???1?a?1,解得:a?22a2a244?2.?a?. 33
相关推荐: