第一范文网 - 专业文章范例文档资料分享平台

18.2 - 勾股定理的逆定理 - 达标训练(含答案)

来源:用户分享 时间:2025/6/1 7:09:32 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

勾股定理的逆定理

一、基础·巩固

1.满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5

2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值).

图18-2-4 图18-2-5 图18-2-6

3.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________. 4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=形状.

5.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?

1AD,试判断△EFC的4

图18-2-7

6.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.

二、综合·应用

7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?

8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.

求证:△ABC是直角三角形.

图18-2-8 9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.

图18-2-9

12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.

求:四边形ABCD的面积.

图18-2-10

- 1 -

二、填空题(每题4分,共32分)

11.已知两条线的长为5cm和4cm,当第三条线段的长为_________时,这三条线段能组成一个直角三角形;

12.如图,从电线杆离地面8米处向地面拉一条长为17米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。

13.如图,学校有一块长方形花铺,有少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. “路”3m 4m

第12题 第14题

第13题

14.如图,有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好

的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少要 才可能到达大树和伙伴在一起。 第16题 第15题 15.如图,一个圆柱形纸筒的底面周长是40cm,高是30cm,一只小蚂蚁在圆筒底的A处,它想吃到上底与下底面中间与A点相对的B点处的蜜糖,则蚂蚁至少爬行 cm能到B点。

17.已知y-2与x成反比例,当x=3时,y=1,则y与x间的函数关系式为 ; 18.反比例函数y?k?k?0?在第一象限内的图象如图,点M是图像上一点, MP垂直x轴于点P,如果△MOP的面x积为1,那么k的值是 ;

三、解答题(第19、20题各7分,第21、22、23题各8分)

20.已知:如图,在?ABC中,AC?8,BC?6,在?ABE中,DE为AB边上的高,DE?12,S?ABE?60,求?C

21.已知:如图,ΔABC中,AD⊥BC于D,若AB=15,AC=13,BC=14,求AD。

22.一架梯子的长度为25米,如图,斜靠在墙上,梯子底部离墙底端为7米。 (1)这个梯子顶端离地面有多高?

(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?

A

- 2 -

参考答案

一、基础·巩固

1.满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5

思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.

由A得有一个角是直角;B、C满足勾股定理的逆定理,所以应选D. 答案:D

2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值).

图18-2-4

解:过D点作DE∥AB交BC于E,

则△DEC是直角三角形.四边形ABED是矩形, ∴AB=DE. ∵∠D=120°,∴∠CDE=30°. 又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm. 根据勾股定理的逆定理得,DE=102?52?53 cm. ∴AB=102?52?53 cm.

3.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.

图18-2-5 图18-2-6

思路分析:因为△ABC是Rt△,所以BC2+AC2=AB2,即S1+S2=S3,所以S3=12,因为S3=AB2,所以AB=S3?12?23. 答案:23

4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=

1AD,试判断△EFC的4形状.

思路分析:分别计算EF、CE、CF的长度,再利用勾股定理的逆定理判断即可. 解:∵E为AB中点,∴BE=2. ∴CE2=BE2+BC2=22+42=20.

同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25. ∵CE2+EF2=CF2,

∴△EFC是以∠CEF为直角的直角三角形.

5.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?

- 3 -

图18-2-7

思路分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.

解:在△ABD中,AB2+AD2=32+42=9+16=25=BD2,所以△ABD为直角三角形,∠A =90°. 在△BDC中,

BD2+DC2=52+122=25+144=169=132=BC2. 所以△BDC是直角三角形,∠CDB =90°. 因此这个零件符合要求.

6.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.

思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可. 证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边. ∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2, ∴△ABC是直角三角形. 二、综合·应用

7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?

思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证). 解:略

8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.

求证:△ABC是直角三角形.

图18-2-8

思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可. 证明:∵AC2=AD2+CD2,BC2=CD2+BD2, ∴AC2+BC2=AD2+2CD2+BD2 =AD2+2AD·BD+BD2 =(AD+BD)2=AB2. ∴△ABC是直角三角形.

9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.

图18-2-9

思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.

解:∵ OA2=OA12+A1A2=32+12=10, OB2=OB12+B1B2=22+42=20, AB2=AC2+BC2=12+32=10, ∴OA2+AB2=OB2.

∴△OAB是以OB为斜边的等腰直角三角形.

10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.

解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.

- 4 -

问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______; ②错误的原因是______________;③本题的正确结论是__________.

思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.

答案:①(B) ②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形. 11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.

思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;(3)已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.

解:由已知可得a2-10a+25+b2-24b+144+c2-26c+169=0, 配方并化简得,(a-5)2+(b-12)2+(c-13)2=0. ∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0. ∴a-5=0,b-12=0,c-13=0. 解得a=5,b=12,c=13. 又∵a2+b2=169=c2,

∴△ABC是直角三角形.

12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.

求:四边形ABCD的面积.

图18-2-10

思路分析:(1)作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);

(2)DE=AB=4,BE=AD=3,EC=EB=3;(3)在△DEC中,3、4、5为勾股数,△DEC为直角三角形,DE⊥BC;(4)利用梯形面积公式,或利用三角形的面积可解.

解:作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA), ∴DE=AB=4,BE=AD=3. ∵BC=6,∴EC=EB=3.

∵DE2+CE2=32+42=25=CD2, ∴△DEC为直角三角形. 又∵EC=EB=3,

∴△DBC为等腰三角形,DB=DC=5. 在△BDA中AD2+AB2=32+42=25=BD2, ∴△BDA是直角三角形. 它们的面积分别为S△BDA=

11×3×4=6;S△DBC=×6×4=12. 22∴S四边形ABCD=S△BDA+S△DBC=6+12=18.

- 5 -

18.2 - 勾股定理的逆定理 - 达标训练(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c91kir9fwpb9x6b6430ym_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top