2020年全国硕士研究生招生考试(数学二)参考答案及解析
1.D
解析:A选项可知(B选项(C选项(?x0(et?1)dt)'?ex?1~x2;
333222??x0ln(1?t)dt)'?ln(1?x)~x; sint2dt)'?sinx2cosx~x2;
sin3tdt)'?sinxsin3(1?cosx)~14x. 2sinx0D选项(2.C
解析:f(x)??1-cosx0eln(1?x),则可疑点为x?1,x??1,x?0,x?2, x(e?1)(x?2)1x?1e?1f(x)??limf(x), limf(x)???,lim?f(x)???,limf(x)??,limx?2x?0+x?1?x??1?2x?0? 故选C
3.A
arcsinx?221dx?arcsinx0=. 解析:?04x(1?x)14.A
解析:f(x)?xln(1?x) 5.B
6.B
0f?(x)0f?(x)f(0)f(0)?1,从而?dx??1dx,即ln?e. ?1,故由题意得?1f(x)?1f(x)f(?1)f(?1)27.C
解析:由于A是不可逆的,所以r(A)?4,又由于A12?0,所以r(A)?3,故r(A)?3,
*所以r(A)?1,所以Ax?0的基础解系中有3个向量,又因为A12?0,所以α1,α3,α4*线性无关,所以解为x?k1α1?k2α3?k3α4,故选C. 8.D
解析:由于α1,α2是A的属于1的特征向量,α3是A的属于-1的特征向量,故-α3也是
A的属于-1的特征向量,α1+α2是A的属于1的特征向量,故选D.
9.?2 t2?1d2ydy1d2y解析:?2??2 ?,2??3dxtdxtdxt?110.2?1 211y解析:
?dy?0x3?1dx??dx?01x203/211x3?1dy??x3?1??2?
220111.(??1)dx?dy 解析:dz?(y?cos(x?y))dx?(x?cos(x?y))dy?dz(0,?)?(??1)dx?dy 21?[xy?sin(x?y)]12.ega 解析13.1 解析由?+??y???2y??y?0?x得y(x)?xe所以?y(x)dx?1
0?y?0?=0,y??0?=1133?a0?g(a?y)[y?(?y)]dy??ga3
1314.a4?2a2
a0?110a1?1?11a01?10a=a00aa00a0aa1?1a=a?01?1aa1?1+a2aaaa00a0aa00a0aa?(?1)4?1a1?1
1?10?100 =a?0?(?1)4?1a1?1
?10 =?4a2?a4.
yxx11?x?k?lim?lim?lim?lim???x???xxx???xx???x???1?x15. 解:e ??1?x???1??1???x?x?x1?x?1?1?1?xln1?1?x?xb?lim?y?kx??lim??x?limxe?1?limxxln?1?????xx???x???x???ex???ee1?x??1?x????????1?11111?1???limx2??ln?1????limx2??x???e2x22e?x??x???e?xx16.解:当x?0时,令u?xt,则g?x???101xf?xt?dt??f?u?du;当x?0时,
x0g?0??f?0?,再由limx?0f?x?f?x??0,从而g?0??0.从?1及函数连续得f?0??limx?0xxf?x???f?t?dtx02x而当x?0时,g'?x??又limg?x??g?0??limx?0x.
x?0x?0?f?t?dt?limf?x??1?g?0?,从而得
0'x2x?02x2?xf?x??xf?t?dt?0?,x?02?'xg?x???.
?1,x?0??2x??xfx?ftdtftdt??????fx????'00???1?1?1?g'?0?,从?lim?又limg?x??limx?0x?0x?0??x2xx222????x'而g?x?在x?0处连续.
?fx'?3x2?y?0?16. 解:对函数关于x,y分别求导,令并两偏导数同时为零,得?',解得2??fx?24y?x?01?x??x?0??6''''''.又fxx?6x,fxy??1,fyy?48y,在?0,0?处,AC?B2??1?0,从或???y?0?y?1??12而函数在此处不取极值;在?,?11?2?处,AC?B?3?0,A?1?0,从而函数在此处取极
?612?1?11?f?,???.
216?612?1?11?f,??.综上函数的极值为小值,且??216?612?12?22111????1x?2x??xx218解:由任意x均有2f?x??xf???,则2f???2f???,两
2xxx1????x??1?x1?2xyx?1?x?式消去f??,可解得f?x??,从而可得2,再由旋转体的体积公式21?y?x?1?x可得所求V?19 解:
??12322?xydy?2??132y21?y22dy?2???3sintdt????3?1?cos2t?dt?266???26
??Dx2?y2dxdy x2sec???4d??0sec?2sec?rrdrrcos?rsec?dr
???4d??0sec?3???4sec3?d?20其中,
??40sec3?d??0??4sec?dtan????sec?tan??4040??4sec?(sec2??1)d?0?30?2??sec?d???4sec?d??
?40?2??sec?d??lnsec??tan?403??2??4sec3?d??ln(2?1)0?112?ln(2?1)22x2?y233dxdy?2?ln(2?1)x44
2??D20
(1)证:令F(x)?f(x)?(2?x)ex,则
F(1)??e<0,F(2)??etdt?0.
122由零点定理,???(1,2)使F(?)?0 即f(?)?(2??)e?.
(2)令g(x)?lnx,由柯西中值定理,???(1,2)使
2f(2)?f(1)f?(?)?
?g(2)?g(1)g(?)f(2)e?即 ?1ln22?故f(2)?ln2?e?.
21. 设点M的坐标为(x,y),(x?0,y?0),则PM?y(x),PMy(x),由已知,?y?(x),TP?TPy?(x)21PM?|TP|332???2(?1)y?2?0,为可降阶微分方程代入初始解y(0)?0,得yy有,化简得?x22y(x)dt?0所求曲线方程为y?1Cx2(C为任意大于零的常数).
?1aa??110?????22.(1)设A=a1a B=110 ???????004???aa1?? 因为B=PAP 所以r(B)=r(A) 由于r(B)=2 所以r(A)=2
2T 故A=(2a+1)(1-a)=0 解得a??1(a?1舍去) 2(2)f(x1,x2,x3)?(x1?x2x323?)?(x2?x3)2 2242 g(y1,y2,y3)?(y1?y2)?3162(y3) 43轾2犏12-犏3犏犏010. 犏犏4犏01-犏3臌x2x3?x??12?2=y1?y2?4令?,则P=x2?x3=y3?3?x2?y2?23.(1)由于P=(α,Aα),α10,且lα1Aα 则α与Aα不成比例,且α10,故P可逆. (2)AP=A(α,Aα)=(Aα,Aα)=(Aα,-Aα+6α)
2 即AP=P犏轾06
犏1-1臌轾06 故PAP=犏
犏1-1臌-1轾06犏 所以A:=B 犏1-1臌 B-lE=-l16-1-l=(l+3)(l-2)
故l1=2,l2=-3,故B可以有两个不同的特征值,可以相似对角化,因此A
可以相似对角化.
相关推荐: