人教版2019-2020学年八年级上学期数学期末考试试卷 I卷
姓名:________ 班级:________ 成绩:________
一、 单选题 (共6题;共12分)
1. (2分) (2017八下·诸城期中) 下列各数:3.14, π,其中无理数有( )
A . 1个 B . 2个 C . 3个 D . 4个
, ,﹣ , ,
2. (2分) (2018七下·柳州期末) 在平面直角坐标系中,点P(1,﹣2)位于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
3. (2分) (2019八下·余姚期末) 如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为( )
A . 8 B . 9
第 1 页 共 11 页
C .
D . 10
4. (2分) (2019八下·如皋期中) 关于一次函数y=﹣2x+3,下列结论正确的是( ) A . 图象过点(1,﹣1) B . 图象经过一、二、三象限 C . y随x的增大而增大
D . 当x> 时,y<0
5. (2分) (2019·河池) 如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是( )
A .
B .
C .
D .
第 2 页 共 11 页
6. (2分) (2018·巴中) 如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于 DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是( )
A . CF=FG B . AF=AG C . AF=CF D . AG=FG
二、 填空题 (共10题;共11分)
7. (1分) (2019七上·泰州月考) ________的平方得25;立方得-8的数是________. 8. (1分) (2018八上·大丰期中) 小刚的体重为43.05 kg,将43.05 kg精确到0.1 kg是________kg.
9. (2分) (2019·长春模拟) 如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC , AB于点M , N;再分别以M , N为圆心,以大于 MN的长为半径画弧,两弧交于点G;作射线AG交BC于点D , 若CD=2,BD=2.5,P为AB上一动点,则PD的最小值为________.
第 3 页 共 11 页
10. (1分) 如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=________.
11. (1分) (2019八上·简阳期末) 已知一次函数y=(-3a+1)x+a的图象上两点A(x1 , y1)、B(x2 , y2),当x1>x2时,有y1 12. (1分) (2018·遂宁) 如图,已知抛物线y=ax2-4x+c(a≠0)与反比例函数y= 的图象相交于B点,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2-4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为________. 13. (1分) (2019九上·苏州开学考) 如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为________. 14. (1分) (2018八下·楚雄期末) 如图,已知函数 图象交于点 和 的 ,则不等式 的解集为________. 第 4 页 共 11 页 15. (1分) (2019七下·甘井子期中) 如图所示平面直角坐标系中,四边形ABCD是边长为1的正方形,以A为圆心,AC为半径画圆交x轴负半轴于点P,则点P的坐标为________. 16. (1分) (2017·娄底模拟) 将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数________. 三、 解答题 (共10题;共81分) 17. (5分) (2019·海口模拟) (1) 计算: (2) 解方程: 18. (10分) (2017八上·重庆期中) 求下列各式中的x. (1) 25(x+1)2=16; 第 5 页 共 11 页
相关推荐: