. ... .
圆综合复习 教学目标】
1、回顾、思考本章所学的知识及思想方法,并能用自己的方式进行梳理,使所学知识系统化 2、进一步丰富对圆及相关结论的认识,并能有条理地、清晰地阐明自己的观点 3、通过复习课的教学,感受归纳的思想方法,养成反思的习惯 【重点难点】
圆的有关概念和性质的应用 【课堂活动】
一、圆的有关概念和性质
二知识点详解 (一)、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
. . .c
. ... .
(二)、点与圆的位置关系
1、点在圆 ? d?r ? 点C在圆; 2、点在圆上 ? d?r ? 点B在圆上; 3、点在圆外 ? d?r ? 点A在圆外;
(三)、直线与圆的位置关系
1、直线与圆相离 ? d?r ? 无交点; 2、直线与圆相切 ? d?r ? 有一个交点; 3、直线与圆相交 ? d?r ? 有两个交点;
ArBdCdOrdd=rrd
(四)、圆与圆的位置关系
外离(图1)? 无交点 ? d?R?r; 外切(图2)? 有一个交点 ? d?R?r; 相交(图3)? 有两个交点 ? R?r?d?R?r; 切(图4)? 有一个交点 ? d?R?r; 含(图5)? 无交点 ? d?R?r;
dR图1rRdr图2dR图3r
d
(五)、垂径定理
图4RrdrR图5垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
. . .c
. ... .
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径 ②AB?CD ③CE?DE ④ 弧BC?弧BD ⑤ 弧AC?弧AD 中任意2个条件推出其他3个结论。
A推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O中,∵AB∥CD ∴弧AC?弧BD
(六)、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①?AOB??DOE;②AB?DE;
③OC?OF;④ 弧BA?弧BD
(七)、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵?AOB和?ACB是弧AB所对的圆心角和圆周角 ∴?AOB?2?ACB
BOACAODCEFCOADOBCBED的弧相
B2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆是等弧;
即:在⊙O中,∵?C、?D都是所对的圆周角 ∴?C??D
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧对的弦是直径。
BDC周角所对的弧
BOAC是半圆,所
OA . . .c
相关推荐: