第一范文网 - 专业文章范例文档资料分享平台

4中考数学复习专题讲座四:探究型问题(学生版)

来源:用户分享 时间:2025/9/11 22:56:24 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2013年中考数学复习专题:探究型问题

考点一:动态探索型:

例1 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别

在菱形的边BC、CD上滑动,且E、F不与B、C、D重合. (1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;

(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

考点二:结论探究型:

例3 如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分

别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.

(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;

(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;

(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)

1

例4 在直角坐标系中,点A是抛物线y=x在第二象限上的点,连接OA,过点O作OB⊥OA,交

2

抛物线于点B,以OA、OB为边构造矩形AOBC.

(1)如图1,当点A的横坐标为 时,矩形AOBC是正方形; (2)如图2,当点A的横坐标为

时,

①求点B的坐标;

②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.

2

例6 如图所示,已知二次函数y=ax+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,

2

﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足.

2

(1)求二次函数y=ax+bx﹣1(a≠0)的解析式; (2)请直接写出使y<0的对应的x的取值范围;

(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立; (4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.

考点四:存在探索型:

例7 如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=6,点C的坐标为(﹣9,0). (1)求点B的坐标;

(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=2,OD=2BD,求直线DE的解析式;

(3)若点P是(2)中直线DE上的一个动点,是否存在点P,使以O、E、P为顶点的三角形是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

3

例8 如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,

2).

(1)求d的值;

(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;

(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.

四、中考真题演练

1.如图,直线y=2x﹣6与反比例函数y=

的图象交于点A(4,2),与x轴交于点B.

(1)求k的值及点B的坐标;

(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

4

4中考数学复习专题讲座四:探究型问题(学生版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c92o9p2ptlj58u602wq94_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top