(2019四川宜宾二模,理19)如图,四边形ABCD是菱形,EA⊥平面ABCD,EF∥AC,CF∥平面BDE,G是AB中点.
(1)求证:EG∥平面BCF;
(2)若AE=AB,∠BAD=60°,求二面角A-BE-D的余弦值.
6.
如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点. (1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.
7.
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (1)证明:PB∥平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD=
,求三棱锥E-ACD的体积.
8.
(2019河北衡水同卷联考,理18)如图,在多面体ABCDFE中,四边形ABCD是菱形,∠ABC=60°,四边形ABEF是直角梯形,∠FAB=90°,AF∥BE,AF=AB=2BE=2. (1)证明:CE∥平面ADF;
(2)若平面ABCD⊥平面ABEF,H为DF的中点,求平面ACH与平面ABEF所成锐二面角的余弦值.
相关推荐: