第一范文网 - 专业文章范例文档资料分享平台

习题解答振动和波动-山东大学

来源:用户分享 时间:2025/5/25 14:52:13 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

,

.

6-17 一个质量为5.00 kg的物体悬挂在弹簧下端让它在竖直方向上自由振动。在无阻尼的情况

下,其振动周期为 ;在阻尼振动的情况下,其振动周期为 。求阻力系数。

解 无阻尼时

.

有阻尼时

.

根据关系式

,

解出?,得

将?代入下式就可求得阻力系数

.

6-21 某一声波在空气中的波长为0.30 m,波速为340 m?s?1 。当它进入第二种介质后,波长变为0.81 m。求它在第二种介质中的波速。

解 由于波速u、波长?和波的频率?之间存在下面的关系

,

当声波从一种介质进入另一种介质时,频率不会改变,所以

.

于是可以求得声波在第二种介质中的波速,为

.

6-22 在同一种介质中传播着两列不同频率的简谐波,它们的波长是否可能相等?为什么?如果这两列波分别在两种介质中传播,它们的波长是否可能相等?为什么?

解 根据书中160页波在介质中的传播速率的表达式(6-50)至(6-52),可以看到,波的传播速率是由介质自身的特性所决定。所以,两列不同频率的简谐波在同一种介质中,是以相同的速率传播的。故有

.

可见,频率不同的两列波,其波长不可能相同。

当这两列不同频率的波在不同的介质中传播时,上面的关系式不成立。只要两种介质中的波速之比等于它们的频率之比,两列波的波长才会相等。

6-23 已知平面简谐波的角频率为? =15.2?102 rad?s?1,振幅为a=1.25?10?m,波长为? = 1.10

2

m,求波速u,并写出此波的波函数。

解 波的频率为

.

波速为

.

所以波函数可以写为

.

6-24 一平面简谐波沿x轴的负方向行进,其振幅为1.00 cm,频率为550 hz,波速为330 m?s?1 ,求波长,并写出此波的波函数。

解 波长为

.

波函数为

.

6-25 在平面简谐波传播的波线上有相距3.5 cm的a、b两点,b点的相位比a点落后45?。已知波速为15 cm?s?1 ,试求波的频率和波长。

解 设a和b两点的坐标分别为x1和x2,这样两点的相位差可以表示为

,

.

由上式可以求得波长,为

.

波的频率为

.

6-27 波源作简谐振动,位移与时间的关系为 y = (4.00?10?3 ) cos 240? t m,它所激发的波以30.0

m?s?1 的速率沿一直线传播。求波的周期和波长,并写出波函数。

解 设波函数为

.

已知长。

, , , 根据这些数据可以分别求得波的周期和波

波的频率为

.

波的周期和波长分别为

,

.

于是,波函数可以表示为

.

6-29 沿绳子行进的横波波函数为位是s。试求:

,式中长度的单位是cm,时间的单

(1)波的振幅、频率、传播速率和波长;

(2)绳上某质点的最大横向振动速率。

解 波函数可写为

搜索更多关于: 习题解答振动和波动-山东大学 的文档
习题解答振动和波动-山东大学.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c937vq257387zlrk1b2wp_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top