第一范文网 - 专业文章范例文档资料分享平台

2019-2020年高考数学大题专题练习——立体几何(一)

来源:用户分享 时间:2025/5/23 11:17:52 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019-2020年高考数学大题专题练习——立体几何(一)

1.如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD?平面ABCD,

PD=AB=2,点E,F,G分别为PC,PD,BC的中点.

(1)求证:PA?EF;

(2)求二面角D-FG-E的余弦值.

2.如图所示,该几何体是由一个直角三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD?AF,AE=AD=2. (1)证明:平面PAD?平面ABFE;

(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22. 3

1

3.四棱锥P?ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为23的菱形,?ADC为锐角,M为PB的中点. P(Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA?CD.

(Ⅲ)求三棱锥P?ABCD的体积.

4.如图,四棱锥S?ABCD满足SA?面ABCD,AD?2a.

(Ⅰ)求证:面SAB?面SAD. (Ⅱ)求证:CD?面SAC.

SADBC

2

MCBDA?DAB??ABC?90?.SA?AB?BC?a,

5.在四棱锥P?ABCD中,底面ABCD为矩形,测棱PD?底面ABCD,PD?DC,点E是

BC的中点,作EF?PB交PB于F. (Ⅰ)求证:平面PCD?平面PBC. (Ⅱ)求证:PB?平面EFD.

6.在直棱柱ABC?A1B1C1中,已知AB?AC,设AB1中点为D,(Ⅰ)求证:DE∥平面BCC1B1. (Ⅱ)求证:平面ABB1A1?平面ACC1A1.

ABDCE

BA11C1

3

PEFDCABA1C中点为E. 7.在四棱锥P?ABCD中,PA?平面ABCD,AB//CD,AB?AD,PA?PB,

AB:AD:CD?2:2:1.

(1)证明BD?PC;

(2)求二面角A?PC?D的余弦值;

(3)设点Q为线段PD上一点,且直线AQ平面PAC所成角的正弦值为

8.在正方体ABCD?A1B1C1D1中,O是AC的中点,E是线段D1O上一点,且D1E=λEO. (1)若λ=1,求异面直线DE与CD1所成角的余弦值; (2)若λ=2,求证:平面CDE⊥平面CD1O.

2PQ,求的值. 3PD

4

2019-2020年高考数学大题专题练习——立体几何(一).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c93tb519py1371qz5d0ci05ej21u0rq00jzs_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top