1?1?1?n?2?1??n?4?2?n1?; ???1????n?143?2??2?1?4(n?1)21?1?当n为奇数时,Pn?Pn?1?n???1?n?1??n;
43?2?(3)证明:d???b2n?52n?511, a??2???nbnn?1)(2n?3)?2n?2n(2n?1)2n?12n?1b2n?3(2(2n?3)?则
前
n项T??1?2?3?14?5?14?5?18?7???11?n?22n(2n?1)?2n?1(2n?3)???2??1?6?1?112n?1(2n?3)???2?6?3, 即有Tn?13. 20.解:(Ⅰ)f?(x)?a?1x,(x?0). a?0时,f?(x)?0,函数f(x)在(0,??)上单调递增.
a??x?1?a?0时,f?(x)??a??x,(x?0). 则f(x)在??0,1??a??上单调递减,在??1?a,?????上单调递增. (Ⅱ)a?1时,f(x)?x?2?lnx(x?0).
f?(x)?x?1x,(x?0). 则f(x)在(0,1)上单调递减,在(1,??)上单调递增.
x?1时,函数f(x)取得极小值即最小值,f(1)??1.
x?0?时,f(x)???;x???时,f(x)???.
- 13 -
和
?函数f(x)存在两个零点.
(Ⅲ)当a?1时,对?x?(1,??),都有(4k?1?lnx)x?f(x)?1?0(k?Z)成立,
化为:4k?lnx?1nx?3?g(x), xg?(x)?11?(1nx?3)x?1nx?2??. xx2x2令u(x)?x?lnx?2,x?(1,??),
u?(x)?1?1?0, x?函数u(x)在x?(1,??)调递增,
u(3)?1?ln3,u(4)?2?2ln2,
?存在唯一的x0?(3,4),使得u?x0??0,即x0?lnx0?2?0,
函数g(x)在?1,x0?内单调递减,在?x0,???单调递增.
?g(x)min?g?x0??lnx0?lnx0?3x?2?31?713??x0?2?0?x0??1??,?, x0x0x0?34???1Q4k??x0??1?min,k?.
x0???k的最大值为0.
- 14 -
相关推荐: