第一范文网 - 专业文章范例文档资料分享平台

两角和差正余弦公式的证明

来源:用户分享 时间:2025/6/2 14:01:04 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

两角和差正余弦公式的证明

两角和差的正余弦公式是三角学中很重要的一组公式。 下面我们就它们的推导证明方法进行探讨。

由角 , 的三角函数值表示 的正弦或余弦值 , 这正是两角和差的正余弦公

式的功能。 换言之 , 要推导两角和差的正余弦公式 , 就是希望能得到一个等式或方程 , 将

,

的三角函数联系起来。

根据诱导公式 , 由角 的三角函数可以得到 的三角函数。 因此 , 由和角公式容

易得到对应的差角公式 , 也可以由差角公式得到对应的和角公式。 又因为

, 即原角的余弦等于其余角的正弦 , 据此 , 可以实现正弦公式和余弦

公式的相互推导。 因此 , 只要解决这组公式中的一个 , 其余的公式将很容易得到。

(一) 在单位圆的框架下推导和差角余弦公式

注意到单位圆比较容易表示 , 和 , 而且角的终边与单位圆的交点坐标可

,

的三角

以用三角函数值表示 , 因此 , 我们可以用单位圆来构造联系 函数值的等式。

1. 和角余弦公式

(方法 1) 如图所示, 在直角坐标系 角

的始边为

, 交

中作单位圆 , 并作角 , 和 , 使

于点 A, 终边交 于点 B;角 始边为 , 终边交

于点 C;角 ,

始边为 ,

, 终边交 于点。从而点 A, B, C和 D的坐标分别为

,

由两点间距离公式得

注意到 , 因此。

注记:这是教材上给出的经典证法。它借助单位圆的框架 , 利用平面内两点间距离公式表达两条相等线段, 从而得到我们所要的等式。注意, 公式中的

为任意角。

2. 差角余弦公式

仍然在单位圆的框架下 , 用平面内两点间距离公式和余弦定理表达同一线段, 也可以得到我们希望的三角等式。这就是

(方法2) 如图所示, 在坐标系 的始边均为

, 交

于点 C, 角

,

中作单位圆 终边交

, 并作角 于点 A,角

和 , 使角 和

终边交 于点。从而

点 A, B的坐标为。

由两点间距离公式得

由余弦定理得

从而有。

注记:方法 2 中用到了余弦定理 , 它依赖于 要补充讨论角

的终边共线, 以及

大于

是三角形的内角。 因此, 还需的情形。容易验证 , 公式在以上

情形中依然成立。

在上边的证明中 , 用余弦定理计算 也可以用向量法来证明。

的过程也可以用勾股定理来进行。

(二) 在三角形的框架下推导和差角正弦公式

除了在单位圆的框架下推导和差角的余弦公式 , 还可以在三角形中构造和角或差角来证明和差角的正弦公式。

1. 和角正弦公式 (一)

(方法3) 如图所示, ,

,

为 的 边上的高 , 为 边上的高。设

, 则。从而有

, ,

,

因此 ,

注意到 ,

从而有: ,

整理可得 :。

注记:在方法 3 中 , 用 和与底角 , 相关的三角函数, 从两个角度来表示

搜索更多关于: 两角和差正余弦公式的证明 的文档
两角和差正余弦公式的证明.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c95oih94a3u83uyw97788_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top