在△AEO和△CFO中,
,
∴△AOE≌△COF, ∴OE=OF.
(2)图2中的结论为:CF=OE+AE. 图3中的结论为:CF=OE﹣AE. 选图2中的结论证明如下: 延长EO交CF于点G, ∵AE⊥BP,CF⊥BP, ∴AE∥CF, ∴∠EAO=∠GCO, 在△EOA和△GOC中,
,
∴△EOA≌△GOC, ∴EO=GO,AE=CG, 在RT△EFG中,∵EO=OG, ∴OE=OF=GO, ∵∠OFE=30°,
∴∠OFG=90°=60°﹣30°, ∴△OFG是等边三角形, ∴OF=GF, ∵OE=OF, ∴OE=FG, ∵CF=FG+CG, ∴CF=OE+AE. 选图3的结论证明如下: 延长EO交FC的延长线于点G, ∵AE⊥BP,CF⊥BP,
∴AE∥CF, ∴∠AEO=∠G, 在△AOE和△COG中,
,
∴△AOE≌△COG, ∴OE=OG,AE=CG, 在RT△EFG中,∵OE=OG, ∴OE=OF=OG, ∵∠OFE=30°,
∴∠OFG=90°=60°﹣30°, ∴△OFG是等边三角形, ∴OF=FG, ∵OE=OF, ∴OE=FG, ∵CF=FG﹣CG, ∴CF=OE﹣AE.
18.(2016·5分)如图,在Rt△ABC中,∠ACB=90°湖北荆门·,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
【考点】旋转的性质.
【分析】(1)根据题意补全图形,如图所示;
(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证. 【解答】解:(1)补全图形,如图所示; (2)由旋转的性质得:∠DCF=90°, ∴∠DCE+∠ECF=90°, ∵∠ACB=90°, ∴∠DCE+∠BCD=90°, ∴∠ECF=∠BCD, ∵EF∥DC,
∴∠EFC+∠DCF=180°, ∴∠EFC=90°, 在△BDC和△EFC中,
,
∴△BDC≌△EFC(SAS), ∴∠BDC=∠EFC=90°.
3.(2016·湖北荆州·8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′. 理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB, ∴CD=DA=DB, ∴∠DAC=∠DCA, ∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA, ∴∠DA′E=∠DEA′, ∴DA′=DE,
∴△A′DE是等腰三角形. ∵四边形DEFD′是菱形, ∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′, ∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC, 在△A′DE和△EFC′中,
,
∴△A′DE≌△EFC′.
相关推荐: