第一范文网 - 专业文章范例文档资料分享平台

2010年高考试题——数学理科真题(全国新课标卷)(解析版)

来源:用户分享 时间:2025/6/7 9:27:05 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2010年全国统一高考数学试卷(理科)(新课标版)

参考答案与试题解析

一、选择题(共12小题,每小题5分,满分60分) 1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=( ) A.(0,2) B.[0,2] C.{0,2] D.{0,1,2} 【考点】交集及其运算.【专题】计算题.

【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.

【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},

故A∩B={0,1,2}. 应选D. 【点评】本题主要考查集合间的交集运算以及集合的表示方法,涉及绝对值不等式和幂函数等知识,属于基础题.

2.(5分)已知复数

,是z的共轭复数,则

=( )

A. B. C.1 D.2

,所以先求|z|再求可得

的值. .

【考点】复数代数形式的混合运算.【分析】因为【解答】解:由另解:

故选A.

【点评】命题意图:本题主要考查复数的运算,涉及复数的共轭复数知识,可以利用复数的一些运算性质可以简化运算.

3.(5分)曲线y=

在点(﹣1,﹣1)处的切线方程为( )

A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2 【考点】利用导数研究曲线上某点切线方程.【专题】常规题型;计算题.

【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

【解答】解:∵y=∴y′=

所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;

所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为: y+1=2×(x+1),即y=2x+1. 故选A.

【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

4.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )

,﹣

),

A. B. C.

D.

【考点】函数的图象.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到

到x轴距离来确定答案.

【解答】解:通过分析可知当t=0时,点P到x轴距离d为再根据当

,于是可以排除答案A,D,

时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,

故应选C.

【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.

5.(5分)已知命题p1:函数y=2x﹣2x在R为增函数,p2:函数y=2x+2x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是( ) A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4

【考点】复合命题的真假;指数函数与对数函数的关系.【专题】简易逻辑.

【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.

【解答】解:易知p1是真命题,而对p2:y′=2xln2﹣当x∈[0,+∞)时,

ln2=ln2(

),

,又ln2>0,所以y′≥0,函数单调递增;

同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.

由此可知,q1真,q2假,q3假,q4真. 故选C. 【点评】只有p1与P2都是真命题时,p1∧p2才是真命题.只要p1与p2中至少有一个真命题,p1∨p2就是真命题. 6.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( ) A.100 B.200 C.300 D.400

【考点】离散型随机变量的期望与方差;二项分布与n次独立重复试验的模型.【专题】计算题;应用题.

【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果. 【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).

而每粒需再补种2粒,补种的种子数记为X 故X=2ξ,则EX=2Eξ=2×1000×0.1=200. 故选B.

【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础性题目. 7.(5分)如果执行右面的框图,输入N=5,则输出的数等于( )

2010年高考试题——数学理科真题(全国新课标卷)(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c95ukr1ibqw5s23r4b01m9s4tl8lgyq00e79_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top