自我修炼复习概要
? 作用——促进细胞伸长生长
? 特点——两重性:高浓度抑制生长,低浓度促进生长
? 根最敏感,茎要求浓度最高
? 顶端优势——顶芽浓度较适宜,促进生长,离顶芽最近的侧芽积累浓度最高,抑制生长,稍远点的侧芽浓度低一些,抑制效应逐渐降低,故称宝塔形
14.生长素及生长素类似物在农业生产上的应用。 ? 因为植物体内生长素少,且容易被酶降解和发生光氧化分解,所以人们人工合成生长素类似物,如萘乙酸、吲哚丁酸、2,4-D
? 培育无籽果实,要在受粉前的柱头上涂抹生长素类似物,如2,4-D溶液 ? 促进插枝生根 ? 防止落花落果
2.
4. 5. 6. 7. 8.
一、DNA是主要的遗传物质 1、肺炎双球菌的转化实验
实验表明:S菌中存在转化因子使R菌转化为S菌 。 2、噬菌体侵染细菌的实验
T2噬菌体是一种专门寄生在细菌体内的 病毒 ,T2噬菌体侵染细菌后,就会在自身遗传物质的作用下,利用 细菌 体内物质来合成自身的组成成分。T2噬菌体头部和尾部的外壳是由 蛋白质 构成的,在它的头部含有 DNA 。 9.
实验过程如下:用放射性同位素 35S 标记一部分T2噬菌体的蛋白质,并用放射性同位素 32P 标记另一部分噬菌体的DNA,然后,用被标记T2噬菌体侵染细菌。当噬菌体在 细菌 体内大量繁殖时,生物学家对标记的物质进行测试,结果表明,噬菌体的 蛋白质 并未进入细菌内部,而是留在细菌的外部,噬菌体的 DNA 却进入细菌的体内。可见,T2噬菌体在细菌内的增殖是在 噬菌体 DNA的作用下完成的。该实验结果表明:在T2噬菌体中,亲代和子代之间具有连续性的物质是 DNA 。
第 25 页 共 39 页 第六章 遗传信息的传递与表达 3.
一、遗传信息
自我修炼复习概要
10. 如果结合上述两实验过程,可以说明DNA是 遗传物质 。
11. 现代科学研究证明,有些病毒只含有RNA和蛋白质,如烟草花叶病毒。因此,在这些病毒中,RNA 是遗传
物质。因为绝大多数生物的遗传物质是 DNA ,所以说DNA是 主要 的遗传物质。 12. 二、DNA分子的结构 13. 1、DNA分子的结构
14. 1953年,美国科学家 沃森和英国科学家 克里克 共同提出了DNA分子的 双螺旋 。
15. DNA分子的基本单位是 脱氧核苷酸 。一分子脱氧核苷酸由一分子 磷酸 、一分子 脱氧核糖和一分子 碱基 。
由于组成脱氧核苷酸的碱基只有4种: 腺嘌呤 (A)、胸腺嘧啶 (T)、 鸟嘌呤 (G)和 胞嘧啶 (C),因此,脱氧核苷酸有4种: 腺嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸、
16. 鸟嘌呤脱氧核苷酸和 胞嘧啶 脱氧核苷酸。很多个脱氧核苷酸 聚合 成为 多核苷酸链 。
17. DNA分子的立体结构是 双螺旋 。DNA分子两条链上的碱基通过 氢键 连接成碱基对,并且碱基配
对有一定的规律: A-T,C-G 。碱基之间的这种一一对应关系,叫做 碱基互补配对原则。
18. 组成DNA分子的碱基只有4种,但碱基对的排列顺序却是千变万化的。碱基对的排列顺序代表了 遗传信息 。
若含有碱基2000个,则排列方式有 4
1000
种。
19. 例. 下面是4位同学拼制的DNA分子部分平面结构模型,正确的是( C ) 20. 21. 22. 23.
24. A B C D
二.DNA的复制和蛋白质的合成
一、DNA分子的复制
1.概念:以亲代DNA分子为模板合成子代DNA分子的过程
时间: 有丝分裂、减数第一次分裂间期 (基因突变就发生在该期) 特点:边 解旋 边 复制 , 半保留 复制
条件:模板 DNA两条链 、原料 游离的4种脱氧核苷酸 、酶、能量
意义: 遗传特性的相对稳定 (DNA分子独特的双螺旋结构,为复制提供了精确的模板,通过碱基互补配对,保证复制能够准确进行。)
例:下图是DNA分子结构模式图,请据图回答下列问题:
(1)组成DNA的基本单位是〔5 〕 脱氧核苷酸 。 (2)若〔3〕为胞嘧啶,则〔4〕应是 鸟嘌呤
(3)图中〔8〕示意的是一条 多核苷酸链 的片断。
(4)DNA分子中,由于〔6 〕 碱基对具有多种不同排列顺序,因而构成了DNA分子的多样性。 (5)DNA分子复制时,由于解旋酶的作用使〔 7 〕 氢键 断裂,两条扭成螺旋的双链解开。
二、RNA分子
RNA分子的基本单位是 核糖核苷酸 。一分子核糖核苷酸由一分子 核糖 、一分子 磷酸 和一分子 碱基 。由于组成核糖核苷酸的碱基只有4种: 腺嘌呤 (A)、 尿嘧啶 (U)、 鸟嘌呤(G)和
第 26 页 共 39 页
自我修炼复习概要
胞嘧啶 (C),因此,核糖核苷酸有4种:腺嘌呤 核糖核苷酸、 尿嘧啶核糖核苷酸、 鸟嘌呤核糖核苷酸和 胞嘧啶核糖核苷酸。
由于RNA没有碱基T( 胸腺嘧啶 ),而有U(尿嘧啶),因此, A-U 配对, C-G 配对。 RNA主要存在于 细胞质 中,通常是 单 链结构,我们所学的RNA有 mRNA 、 tRNA 、 rRNA 等类型。 三、基因的结构与表达
1、基因----有遗传效应的DNA片段
基因携带 遗传信息,并具有 遗传效应 的DNA片段,是决定生物 性状 的基本单位。
2、基因控制蛋白质的合成
基因控制蛋白质合成的过程包括两个阶段-----转录和翻译 (1)转录
场所: 细胞核 模板: DNA一条链 原料: 核糖核苷酸 产物: mRNA
(2)翻译
场所: 核糖体 模板: mRNA 工具: tRNA 原料: 氨基酸 产物: 多肽
由上述过程可以看出:DNA分子的脱氧核苷酸的排列顺序决定了 mRNA 的排列顺序,信使RNA中核糖核苷酸排列顺序又决定了 氨基酸 的排列顺序,氨基酸的排列顺序最终决定了 特异性,从而使生物体表现出各种遗传性状。
3、中心法则:
三、基因工程简介
一、基因操作的工具
(1)基因的剪刀—— 限制性核酸内切酶 (2)基因的化学浆糊—— DNA连接酶
(3)基因的运输工具一— 质粒 2、基因操作的基本步骤
(1) 获取目的基因 (2) 目的基因与运载体重组
(3) 重组DNA分子导入受体细胞 (4) 筛选含目的基因的受体细胞
第七章 细胞的分裂与分化 一、生殖和生命的延续
一、生殖的类型 生物的生殖可分为 无性生殖 和 有性生殖两大类。
1、常见的无性生殖方式有: 分裂生殖 (例: 细菌、草履虫、眼虫 );
出芽生殖 (例: 水螅、酵母菌 ); 孢子生殖 (例: 真菌、苔藓 ); 营养生殖 (例: 果树 )。
第 27 页 共 39 页
自我修炼复习概要
2、有性生殖
这种生殖方式产生的后代具备双亲的 遗传信息 ,具有更强的生活能力和变异性,这对于生物的生存与进化具有重要意义。
二、有丝分裂
一、有丝分裂
体细胞的有丝分裂具有细胞周期,它是指 连续 分裂的细胞从一次分裂 结束 时开始,到下一次分裂 结束 时为止,包括 分裂间 期和 分裂 期。 1、分裂间期
分裂间期最大特征是 DNA复制,蛋白质合成 ,对于细胞分裂来说,它是整个周期中时间 最长 的阶段。 2、分裂期 (1)前期
最明显的变化是 染色体明显 ,此时每条染色体都含有两条 染色单体,由一个着丝粒相连,同时, 核仁 解体, 核膜 消失,纺锤丝形成 纺锤体 。 (2)中期
每条染色体的着丝点都排列在细胞中央的 赤道 面上,清晰可见,便于观察。 (3)后期
每个 着丝粒 一分为二, 染色单体 随之分离,形成两条染色体 ,在 纺锤丝 牵引下向 两极 运动。 (4)末期
染色体到达两极后,逐渐变成丝状的 染色质,同时 纺锤体 消失, 核膜核仁 重新出现,将染色质包围起来,形成两个新的 细胞核 ,然后细胞一分为二。 (5)动植物细胞有丝分裂比较
纺锤体形成方式 细胞一分为二方式 意义 (6)填表: DNA 染色体 染色单体 三.细胞周期
1.请根据右图回答问题(括号内写标号)。
(1)依次写出C、E两个时期的名称 G2;中期 ; (2)RNA和蛋白质合成时期为(A ) G1期 ,DNA复制时S期 ,核仁、核膜消失的时期为( D ) 前期 ,核仁、核膜重新(F ) 末期 。
(3)细胞在分裂后,可能出现细胞周期以外的三种生活状态是 暂不增殖、细胞分化 。
四.实验:植物细胞有丝分裂的观察 1.实验材料: 植物根尖
2.实验步骤: 解离(试剂: 20%HCl)、 漂洗 、染色(试剂: 龙胆紫 )、 压片 。
第 28 页 共 39 页
连续增殖、期为( B ) 形成时期为
间期 2n-4n 2n 0-4n 前期 4n 2n 4n 中期 4n 2n 4n 后期 4n 4n 0 末期 2n 2n 0 植物 纺锤丝 细胞板分割 动物 纺锤丝、中心体 细胞膜内陷 亲子代遗传性状的稳定性和连续性
相关推荐: