第一范文网 - 专业文章范例文档资料分享平台

2019年浙江省绍兴市中考数学试题(解析版)

来源:用户分享 时间:2025/5/16 16:19:16 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

21.(10分)在屏幕上有如下内容:

如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.

(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答. (2)以下是小明、小聪的对话:

小明:我加的条件是BD=1,就可以求出AD的长

小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等. 参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.

22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.

(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.

(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.

23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10. (1)在旋转过程中,

①当A,D,M三点在同一直线上时,求AM的长.

②当A,D,M三点为同一直角三角形的顶点时,求AM的长.

(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.

24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,

AD上,MN,EF交于点P,记k=MN:EF.

(1)若a:b的值为1,当MN⊥EF时,求k的值. (2)若a:b的值为,求k的最大值和最小值.

(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.

2019年浙江省绍兴市中考数学试卷

参考答案与试题解析

一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分) 1.(4分)﹣5的绝对值是( ) A.5

B.﹣5

C.

D.﹣

【分析】根据绝对值的性质求解.

【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5. 故选:A.

【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为( ) A.12.6×10

7

B.1.26×10

n8

C.1.26×10

9

D.0.126×10

10

【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】解:数字126000000科学记数法可表示为1.26×10元. 故选:B.

【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

3.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是( )

n8

A. B.

C. D.

【分析】根据从正面看得到的视图是主视图,可得答案.

【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意, 故选:A.

【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.

4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下: 组别(cm) 人数 x<160 5 160≤x<170 38 170≤x<180 42 x≥180 15 根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( ) A.0.85

B.0.57

C.0.42

D.0.15

【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解. 【解答】解:样本中身高不低于180cm的频率=所以估计他的身高不低于180cm的概率是0.15. 故选:D.

【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.

5.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )

=0.15,

A.5°

B.10°

C.30°

D.70°

【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案. 【解答】解:∠3=∠2=100°,

∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°, 故选:B.

2019年浙江省绍兴市中考数学试题(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9615p6y7dl6rgfk15sw18xzko02xvg00fyf_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top