第一范文网 - 专业文章范例文档资料分享平台

(word完整版)2018年浙江丽水数学中考试题及答案,推荐文档

来源:用户分享 时间:2025/5/16 6:45:31 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

22.如图,抛物线 (a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B

的左边),点C , D在抛物线上.设A(t , 0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

H , (3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,且直线GH平分矩形的面积时,求抛物线平移的距离.

23. 如图,四边形ABCD的四个顶点分别在反比例函数

(x>0,0<m<n)的图象上,对

角线BD∥y轴,且BD⊥AC于点P . 已知点B的横坐标为4.

(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式. ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m , n之间的数量关系;若不能,试说明理由. 24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA , CD为边作矩形ACDE , 直线

AB与直线CE , DE的交点分别为F , G .

(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长. ②若DG=GF , 求BC的长.

(2)已知BC=9,是否存在点D , 使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

2018年浙江省丽水市中考数学试卷(解析版)

一、一、选择题(共10题;共20分)

1.在0,1,

,?1四个数中,最小的数是( )

D. ?1

,即-1是最小的数.故

A. 0 B. 1 C. 【解析】【解答】解: 答案为:D。

【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大 2.计算

结果正确的是( )

C.

D.

A. B. 【解析】【解答】解:

,故答案为:B。

=

,则可用同底数幂的除法法则计算即可。

【分析】考查同底数幂的除法法则;

3.如图,∠B的同位角可以是( )

A. ∠1 B. ∠2 C. ∠3 D. ∠4 【解析】【解答】解:直线DE和直线BC被直线AB所截成的∠ B与∠ 4构成同位角,故答案为:D 【分析】考查同位角的定义;需要找一个角与∠ B构造的形状类似于“F” 4.若分式

的值为0,则x的值是( )

C. 3或 的值为0,则

,解得

D. 0

.故答案为:A.

A. 3 B. 【解析】【解答】解:若分式

【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.

5.一个几何体的三视图如图所示,该几何体是( )

A. 直三棱柱 B. 长方体 C. 圆锥 D. 立方体 【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。

【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状。

6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,

指针停止后落在黄色区域的概率是( )

A. B. C. D. 【解析】【解答】解:P(指针停止后落在黄色区域)= 【分析】角度占360°的比例,即为指针转到该区域的概率。

,故答案为:B。

7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是( )

A. (5,30) B. (8,10) C. (9,10) D. (10,10)

【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为

,即横坐标为9,∴点P(9,10),故答案为:C。

【分析】在直角坐标系中确定点的坐标,即要确定该点的横、纵坐标,或者求出该点到x轴,y轴的距离,再根据该点所在的象限,得到该点的坐标;根据图中所给的数据,可分别求出点P到x轴,y轴的距离,又点P在第一象限,即可得出。

8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α , ∠ADC=β , 则竹竿AB与AD的长度

之比为( )

A. B. C. D.

【解析】【解答】解:设AC=x, 在Rt△ABC中,AB= 在Rt△ACD中,AD=

. ,

故答案为:B。

【分析】求AB与AD的比,就不必就求AB和AD的具体的长度,不妨设AB=x,用含x的代数式分别表示出AB,AD的长,再求比。

9.如图, 若点A , D , E在同一条直线上,∠ACB=20°将△ABC绕点C顺时针旋转90°得到△EDC .,

则∠ADC的度数是( )

A. 55° B. 60° C. 65° D. 70° 【解析】【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC . ∴∠ACE=90°,AC=CE , ∴∠E=45°,

(word完整版)2018年浙江丽水数学中考试题及答案,推荐文档.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c96ah9438c32r4yi9c8hj79c964hjzq00li6_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top