点评: 大值超过了3千米. 本题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题. 2
2
21.(14分)(2015?上海)已知椭圆x+2y=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.
(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;
(2)设l1与l2的斜率之积为﹣,求面积S的值. 考点: 直线与圆锥曲线的综合问题;点到直线的距离公式. 直线与圆;圆锥曲线的定义、性质与方程. (1)依题意,直线l1的方专题: 分析: 程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得第29页(共43页)
S=|AB|d=2|x1y2﹣x2y1|; (2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案. 方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值. 解答: 解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d=
第30页(共43页)
=, 因为|AB|=2|AO|=2,所以S=|AB|d=2|x1y2﹣x2y1|; (2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣, 设直线l1的方程为y=kx,联立方程组,消去y解得x=±, 根据对称性,设x1=,则y1=,
第31页(共43页)
同理可得x2=,y2=,所以S=2|x1y2﹣x2y1|=. 方法二:设直线l1、l2的斜率分别为、,则=﹣, 所以x1x2=﹣2y1y2, ∴=4=﹣2x1x2y1y2, ∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上, ∴()()=+4+2
第32页(共43页)
相关推荐: