比例解行程问题
知识框架
比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时
s乙来表示,大体可分为以下两种情况: 间、路程分别用v甲,v乙;t甲,t乙;s甲,
1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就
等于他们的速度之比。
s?s甲?v甲?t甲s,这里因为时间相同,即t甲?t乙?t,所以由t甲?甲,t乙?乙 ?v甲v乙?s乙?v乙?t乙得到t?s甲v甲?svs乙,甲?甲,甲乙在同一段时间t内的路程之比等于速度比 v乙s乙v乙2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之
比等于他们速度的反比。
?s甲?v甲?t甲,这里因为路程相同,即s甲?s乙?s,由s甲?v甲?t甲,s乙?v乙?t乙 ?s?v?t乙乙?乙得s?v甲?t甲?v乙?t乙,
v甲v乙?t乙,甲乙在同一段路程s上的时间之比等于速度比的反比 t甲重难点
(1) 理解行程问题中的各种比例关系. (2) 掌握寻找比例关系的方法来解行程问题.
MSDC模块化分级讲义体系 六年级奥数.行程. 比例解行程问题(ABC级).教师版 Page 1 of 22
例题精讲
【例 1】 甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车
才从B城出发,并且甲车的速度是乙车速度的。当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。
【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【关键词】2010年,第8届,希望杯,5年级,1试
【解析】 两车相遇时共行驶330千米,但是甲多行30千米,可以求出两车分别行驶的路程,可得甲车行
5驶180千米,乙车行驶150千米,由甲车速度是乙车速度的6可以知道,当乙车行驶150千米
5150??1256的时候,甲车实际只行驶了千米,那么可以知道在乙车出发之前,甲车已经行驶了
56180-125=55千米。
【答案】55千米
【巩固】 甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机
距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是 。
【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【关键词】2006年,第4届,希望杯,6年级,1试
【解析】 可设已走路程为X千米,未走路程为(12-X)千米。
1列式为:X-3X=(12-X)×2 解得:X=9
13 9?30?60?18分钟,现在时间是11:03 【答案】11:03
【例 2】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地
方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是
MSDC模块化分级讲义体系
六年级奥数.行程. 比例解行程问题(ABC级).教师版
Page 2 of 22
8千米,这时是几点几分?
【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 画一张简单的示意图:
图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分。
注意:小明第2个4千米,也就是从A到B的过程中,爸爸一共走12千米,这一点是本题的关键.对时间相同或距离相同,但运动速度、方式不同的两种状态,是一大类行程问题的关键.本题的解答就巧妙地运用了这一点. 【答案】8点32分
【巩固】 欢欢和贝贝是同班同学,并且住在同一栋楼里.早晨 7 : 40 ,欢欢从家出发骑车去学校, 7 : 46
追上了一直匀速步行的贝贝;看到身穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度提高到原来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时,贝贝也恰好到学校.如果欢欢在家换校服用去 6分钟且调头时间不计,那么贝贝从家里出发时是几点几分.
【考点】行程问题之比例解行程 【难度】2星 【题型】解答
【解析】 欢欢从出发到追上贝贝用了 6分钟,她调头后速度提高到原来的 2倍,根据路程一定,时间比
等于速度的反比,她回到家所用的时间为 3 分钟,换衣服用时 6 分钟,所以她再从家里出发到到达学校用了 20- 6-3- 6 =5分钟,故她以原速度到达学校需要 10 分钟,最开始她追上贝贝用了 6分钟,还剩下 4 分钟的路程,而这 4 分钟的路程贝贝走了 14 分钟,所以欢欢的 6 分钟路程贝贝要走 14 ×(6÷ 4)= 21分钟,也就是说欢欢追上贝贝时贝贝已走了 21 分钟,所以贝贝是 7 点 25 分出发的.
【答案】7 点 25 分
MSDC模块化分级讲义体系
六年级奥数.行程. 比例解行程问题(ABC级).教师版
Page 3 of 22
【例 3】 甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进
到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离?
【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【解析】 画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):
可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).
【答案】260千米
【巩固】 地铁有 A,B 两站,甲、乙二人都要在两站间往返行走.两人分别从 A,B 两站同时出发,他们
第一次相遇时距 A 站 800 米,第二次相遇时距 B 站 500 米.问:两站相距多远?
【考点】行程问题之比例解行程 【难度】2星 【题型】解答
【解析】 从起点到第一次迎面相遇地点,两人共同完成 1 个全长,从起点到第二次迎面相遇地点,两人
共同完成 3 个全长,一个全程中甲走 1 段 800 米,3 个全程甲走的路程为 3 段 800 米. 画图可知,由 3 倍关系得到:A,B 两站的距离为 800×3-500=1900 米
【答案】1900 米
【例 4】 如右图,A,B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发反向而行,两人在 C 点
第一次相遇,在 D 点第二次相遇.已知 C 离 A 有 80 米,D 离 B 有 60 米,求这个圆的周长.
MSDC模块化分级讲义体系 六年级奥数.行程. 比例解行程问题(ABC级).教师版 Page 4 of 22
相关推荐: