1.2.2 »ù±¾³õµÈº¯ÊýµÄµ¼Êý¹«Ê½¼°µ¼ÊýµÄÔËËã·¨Ôò(¶þ)
½Ìѧ½¨Òé 1.½Ì²Ä·ÖÎö
±¾²¿·ÖÄÚÈÝÊǶԵ¼Êý¹«Ê½¼°Æäµ¼ÊýÔËËã·¨ÔòµÄÓ¦ÓõÄÉ,ÖØµãÊÇÀí½â¼òµ¥µÄ¸´ºÏº¯ÊýµÄ¸´ºÏ¹ý³Ì,ÄѵãÊÇ·ÖÎö¸´ºÏº¯ÊýµÄ½á¹¹Ìصã,²¢ÄÜÇó³ö¸´ºÏº¯ÊýµÄµ¼Êý.
2.Ö÷ÒªÎÊÌâ¼°½Ìѧ½¨Òé
¹ØÓÚ¸´ºÏº¯ÊýµÄµ¼ÊýµÄ½Ìѧ,½¨Òé½Ìʦ°ÑÖØµã·ÅÔÚÒýµ¼Ñ§ÉúÀí½â¼òµ¥¸´ºÏº¯ÊýµÄ¸´ºÏ¹ý³ÌÉÏ,ÔÚ·ÖÎö¸´ºÏº¯ÊýµÄ½á¹¹ÌصãµÄ»ù´¡ÉÏ,ÔÙÅ䱸¼¸¸öÀýÌâ,²»±Ø½éÉܸ´ºÏº¯ÊýµÄÑϸñ¶¨Òå,²»ÒªÇóÖ¤Ã÷¸´ºÏº¯ÊýµÄÇóµ¼¹«Ê½. ±¸Ñ¡Ï°Ìâ
1.º¯Êýy=µÄµ¼ÊýÊÇ( ) A. B.- C. D.
½âÎö:¡ßy=,
¡ày'=' = = ==-. ´ð°¸:B
32
2.É躯Êýf(x)=x+x+tan ¦È,ÆäÖЦȡÊ,Ôòµ¼Êýf'(1)µÄȡֵ·¶Î§ÊÇ( ) A.[-2,2] B.[] C.[,2] D.[,2]
2
½âÎö:¡ßf'(x)=sin ¦È¡¤x+cos ¦È¡¤x,
¡àf'(1)=sin ¦È+cos ¦È=2sin. ¡ß¦È¡Ê,¡àsin.
¡àf'(1)¡Ê[,2],¹ÊÑ¡D. ´ð°¸:D
3.ÇóÇúÏßy=ln(2x-1)Éϵĵ㵽ֱÏß2x-y+3=0µÄ×î¶Ì¾àÀë.
½â:ÉèÇúÏßy=ln(2x-1)ÔÚµã(x0,y0)´¦µÄÇÐÏßÓëÖ±Ïß2x-y+3=0ƽÐÐ.
¡ßy'=,¡ày'=2,½âÖ®,µÃx0=1,¡ày0=ln(2-1)=0,¼´Çеã×ø±êΪ(1,0).
¡àÇеã(1,0)µ½Ö±Ïß2x-y+3=0µÄ¾àÀëΪd=,¼´ÇúÏßy=ln(2x-1)Éϵĵ㵽ֱÏß2x-y+3=0µÄ×î¶Ì¾àÀëÊÇ.
22
4.Å×ÎïÏßC1:y=x-2x+2ÓëÅ×ÎïÏßC2:y=-x+ax+bÔÚËüÃǵÄÒ»¸ö½»µã´¦µÄÇÐÏß»¥Ïà´¹Ö±. (1)Çóa,bÖ®¼äµÄ¹ØÏµ;
(2)Èôa>0,b>0,ÇóabµÄ×î´óÖµ.
½â:(1)ÉèÁ½Å×ÎïÏߵĽ»µãΪM(x0,y0),
ÓÉÌâÒâÖª-2x0+2=-+ax0+b, ÕûÀíµÃ2-(2+a)x0+2-b=0.¢Ù
Óɵ¼Êý¿ÉµÃÅ×ÎïÏßC1,C2ÔÚ½»µãM´¦µÄÇÐÏßбÂÊ·Ö±ðΪk1=2x0-2,k2=-2x0+a.ÒòÁ½ÇÐÏß»¥Ïà´¹Ö±,ÔòÓÐk1k2=-1,¼´(2x0-2)(-2x0+a)=-1,
ÕûÀíµÃ2[2-(2+a)x0]+2a-1=0.¢Ú ÁªÁ¢¢ÙºÍ¢Ú,ÏûÈ¥x0,µÃa+b=. (2)ÓÉ(1)Öªa+b=,ÓÖa>0,b>0, ¡àab¡Ü=( )2=.
µ±ÇÒ½öµ±a=b=ʱȡµÈºÅ,¹ÊabµÄ×î´óֵΪ.
1
Ïà¹ØÍÆ¼ö£º