第一范文网 - 专业文章范例文档资料分享平台

(最新版)基于FPGA的等精度频率计的毕业设计论文

来源:用户分享 时间:2025/5/26 11:47:57 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

因此直接测频法只适合测量频率较高的信号,不能满足在整个测量频段内的测量精度保持不变的要求。

方案三:采用等精度频率测量法,测量精度保持恒定,不随所测信号的变化而变化。在快速测量的要求下,要保证较高精度的测频,必须采用较高的标准频率信号。单片机受本身时钟频率和若干指令运算的限制,测频速度较慢,无法满足高速、高精度的测频要求;而采用高集成度、高速的现场可编程门阵列FPGA为实现高速、高精度的测频提供了保证。

本设计所采用的测频方法就是等精度频率测量法,下面我们将对等精度频率测量法做进一步介绍。

2.3.2等精度测频原理

等精度测频方法是在直接测频方法的基础上发展起来的。它的闸门时间不是固定的值,而是被测信号周期的整数倍,即与被测信号同步,因此,避除了对被测信号计数所产生±1个字误差,并且达到了在整个测试频段的等精度测量。其测频原理如图2.1所示。在测量过程中,有两个计数器分别对标准信号和被测信号同时计数。首先给出闸门开启信号(预置闸门上升沿),此时计数器并不开始计数,而是等到被测信号的上升沿到来时,计数器才真正开始计数。然后预置闸门关闭信号(下降沿)到时,计数器并不立即停止计数,而是等到被测信号的上升沿到来时才结束计数,完成一次测量过程。可以看出,实际闸门时间t与预置闸门时间t1并不严格相等,但差值不超过被测信号的一个周期[4]。

图2.1 等精度测频原理波形图

等精度测频的实现方法可简化为图2.2所示。CNT1和CNT2是两个可控计数器,标准频率信号从CNT1的时钟输入端CLK输入;经整形后的被测信号从CNT2的时钟输入端CLK输入。当预置门控信号为高电平时,经整形后的被测信号的上升沿通过D触发器的Q端同时启动CNT1和CNT2。CNT1、CNT2同时对标准频率信号和经整形后的被测信号进行计数,分别为NS与NX。当预置门信号为低电平的时候,后而来的被测信号的上升沿将使两个计数器同时关闭,所测得的频率为(FSNS)*NX。则等精度测量方法测量精度与预置门宽度的标准频率有关,与被测信号的频率无关。在预置门时间和常规测频闸门时间相同而被测信号频率不同的情况下,等精度测量法的测量精度不变。

图2.2 等精度测频实现原理图

2.3.3误差分析

设在一次实际闸门时间t中计数器对被测信号的计数值为Nx,对标准信号的计数值为Ns。标准信号的频率为fs,则被测信号的频率如式(2-1):

fx=(NxNs)·fs (2-1) 由式1-1可知,若忽略标频fs的误差,则等精度测频可能产生的相对误差如式(2-2):

δ=(|fxe-fx|fxe)×100% (2-2)

其中fxe为被测信号频率的准确值。

在测量中,由于fx计数的起停时间都是由该信号的上升沿触发的,在闸门时间t内对fx的计数Nx无误差(t=NxTx);对fs的计数Ns最多相差一个数的误差,即|ΔNs|≤1,其测量频率如式(2-3):

fxe=[Nx(Ns+ΔNs)]·fs (2-3)

将式(2-1)和(2-3)代入式(2-2),并整理如式(2-4):

δ=|ΔNs|Ns≤1Ns=1(t·fs) (2-4)

由上式可以看出,测量频率的相对误差与被测信号频率的大小无关,仅与闸门时间和标准信号频率有关,即实现了整个测试频段的等精度测量。闸门时间越长,标准频率越高,测频的相对误差就越小。标准频率可由稳定度好、精度高的高频率晶体振荡器产生,在保证测量精度不变的前提下,提高标准信号频率,可使闸门时间缩短,即提高测试速度[5]。

本章小结

本章从各个方面说明了频率计的工作原理,介绍了频率测量的原理和误差的分析,通过对各种频率测量方法的比对,对等精度频率计的实现,在理论上起到了作用。

3. 数字频率计的系统设计与功能仿真

3.1 系统的总体设计

当系统正常工作时,由系统时钟提供的100MHz的输入信号,经过信号源模块,先通过100分频产生1MHZ的时钟信号,再将1MHZ的时钟信号分频产生多种频率输出,其中1HZ的输出频率被作为控制模块的时钟输入,7812HZ的输出频率被作为显示模块的时钟输入,由控制模块产生的计数使能信号testen和清零信号clr对计数模块进行控制,而由其产生的锁存信号load对锁存模块进行控制,一旦计数使能信号为高电平,并且时钟上升沿到来,计数器便开始正常计数,清零信号到来则计数清零,而当锁存信号为高电平时,数据便被锁存器锁存,然后将锁存的数据输出到显示模块显示出来,数据锁存保证系统可以稳定显示数据,显示译码驱动电路将二进制表示的计数结果转换成相应的能够在数码显示管上可以显示的十进制结果。在数码显示管上可以看到计数结果。数字频率计的原理框图如图3.1所示。主要由5个模块组成,分别是:信号源模块、控制模块、计数模块、锁存器模块和显示器模块[6]。

图3.1 数字频率计的原理框图

根据数字频率计的系统原理,cnt控制信号发生器。testctl的计数使能信号testen能产生一个1 s宽的周期信号,并对频率计的每一计数器Cnt10的ENA使能端进行同步控制:当testen高电平时允许计数、低电平时停止计数。

reg32b为锁存器。在信号load的上升沿时,立即对模块的输入口的数据锁存到reg32b的内部,并由reg32b的输出端输出,然后,七段译码器可以译码输出。在这里使用了锁存器,好处是可以稳定显示数据,不会由于周期性的清零信号而不断闪烁。

Cnt10为十进制计数器。有一时钟使能输入端ENA,用于锁定计数值。当高电平时允许计数,低电平时禁止计数。将八个十进制计数器Cnt10级联起来实现8 位十进制计数功能[2,7] 。

disply为七段译码显示驱动电路,可以将频率计数的结果译成能在数码管上显示的相对应的阿拉伯数字,便于读取测量的结果。

为了实现系统功能,测频控制信号发生器testctl、计数器Cnt10、锁存器reg32b存在一个工作时序的问题,设计时需要综合考虑。

8位数字频率计的顶层框图(endfreq.bdf),设计实现包括信号源模块(F1MHZ、CNT)、频率计模块(FREQ)和显示模块(display)三大模块。下面分别介绍三个模块的结构和实现方法。

3.2 信号源模块

信号源是为了产生1MHz 的门控信号和待测的定频信号,而对输入系统时钟clk

(最新版)基于FPGA的等精度频率计的毕业设计论文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9akm90elq51j03v4iv5u208bi7808n00a6x_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top