第一范文网 - 专业文章范例文档资料分享平台

2020年九年级下学期数学中考三轮压轴专题培优练习:《四边形》

来源:用户分享 时间:2025/5/25 18:51:49 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∵△BAE≌△BCG, ∴AE=CG,

∵四边形BEFG是正方形, ∴FG=BE, ∴AE=BE,

在Rt△ADE和Rt△BCE中,,

∴Rt△ADE≌Rt△BCE(HL), ∴DE=CE=DC=×8=4; ②当CF=FG时,如图2所示:

点E与点C重合,即正方形ABCD和正方形BEFG的一条边重合,DE=CD=8;③当CF=CG时,如图3所示:

21

点E与点D重合,DE=0; ∵点E与点D不重合, ∴不存在这种情况;

④CF=CG,当点E在DC延长线上时,如图4所示:

DE=CD+CE=16;

综上所述,当△CFG为等腰三角形时,DE的长为4或8或16.

7.解:(1)①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是MN=

BM+DN.理由如下:

在△ADN与△ABM中,

22

∴△ADN≌△ABM(SAS), ∴AN=AM,∠NAD=∠MAB, ∵∠MAN=135°,∠BAD=90°,

∴∠NAD=∠MAB=(360°﹣135°﹣90°)=67.5°, 作AE⊥MN于E,

则MN=2NE,∠NAE=∠MAN=67.5°. 在△ADN与△AEN中,

∴△ADN≌△AEN(AAS), ∴DN=EN,

∵BM=DN,MN=2EN, ∴MN=BM+DN.

故答案为:MN=BM+DN;

②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:23

延长NC到点P,使DP=BM,连结AP. ∵四边形ABCD是正方形, ∴AB=AD,∠ABM=∠ADC=90°. 在△ABM与△ADP中,

∴△ABM≌△ADP(SAS), ∴AM=AP,∠1=∠2=∠3, ∵∠1+∠4=90°, ∴∠3+∠4=90°, ∵∠MAN=135°,

∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,

∴△ANM≌△ANP(SAS), ∴MN=PN,

∵PN=DP+DN=BM+DN, ∴MN=BM+DN;

24

2020年九年级下学期数学中考三轮压轴专题培优练习:《四边形》.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9bql95mway7b8vd538ce5nrap1rg1l00xeq_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top