福建省福州市福清市2020年中考数学模拟试卷(八)及答案解析
一、选择题(每小题3分,共30分) 1.(3分)﹣2018的绝对值是( ) A.±2018
B.﹣2018
C.﹣
D.2018
2.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有00人摆脱贫困,将00用科学记数法表示是( )
A.55×106 B.0.55×108 C.5.5×106 D.5.5×107 3.(3分)如图所示的几何体的俯视图是( )
A. B. C. D.
4.(3分)下列各式计算正确的是( )
22336A.(b+2a)(2a﹣b)=b﹣4a B.2a+a=3a
C.a3?a=a4 2363
D.(﹣ab)=ab
5.(3分)某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( ) 成绩(分) 人数(人) 30 32 29 4 28 2 26 1 18 1 A.该班共有40名学生 B.该班学生这次考试成绩的平均数为29.4分 C.该班学生这次考试成绩的众数为30分 D.该班学生这次考试成绩的中位数为28分
2
6.(3分)已知关于x的一元二次方程x+2x﹣(m﹣2)=0有实数根,则m的取值范围是( )
A.m>1 B.m<1 C.m≥1 D.m≤1
7.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为( )
A.6 B.8 C.10 D.12
8.(3分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率( ) A.
B.
C.
D.
9.(3分)如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )
A.4 B.﹣4 C.﹣6 D.6
10.(3分)如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )
A.2π﹣
B.π+ C.π+2 D.2π﹣2
二、填空题(每小题3分,共15分)
011.(3分)2018+
= .
的非负整数解的个数是 .
的图象交于A(﹣1,2),B(1,﹣2)两点,
12.(3分)不等式组
13.(3分)如图,正比例函数y1=k1x和反比例函数y2=若y1>y2,则x的取值范围是 .
14.(3分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4
,则△CEF的周长为 .
15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的
一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为 .
三、解答题(本大题共8小题,共75分) 16.(8分)先化简的值代入求值.
17.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组; ②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别 第1组 第2组 第3组 第4组 第5组 成绩x分 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x<100 频数(人数) 6 8 14 a 10 ÷(
﹣x+1),然后从﹣
<x<
的范围内选取一个合适的整数作为x
18.(9分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C. (1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
19.(9分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
20.(9分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴. (1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.
21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元. ①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
相关推荐: