论文自评
(成功的队伍会把现有的模型、数据和新的思想创造性地组合起来)
here are some of the issues that kept papers from the final rounds:(以下问题会使得论文无法进入最后一轮评审) ?errors in mathematics, which quickly took them out of further consideration. (数学上的错误,使他们无法进行更深层次的思考)
?including mathematics that didn’t fit the flow of the presentation. in a few cases, mathematics appears to have been inserted to make a paper look more credible or to take the place of other work that had led to a dead end. (数学方法被插入论文中是为了使论文看起来更可信 或是取代某些其他的工作 将会使论文被淘汰)
?changing notation, sometimes even within a single section. (改变符号,有时甚至在同一个章节中) (不完整的表述) the mathematics was a result of a “drive-by” insertion, fitting it into the model could be difficult.
(一些模型是很难理解,可怜的写作是最常见的原因。另一个原因是使用不合适的数学。如果数学是由于“顺路”插入,拟合模型是很困难的。) here are a few of the modeling issues that hurt some papers’ chance of entering the final rounds:
[wikipedia 2012]). 好论文用高度简化的科学模型复杂的隐喻现实生活现象?dependence ondeus ex machina: an assumption, equation, reference, or procedure invoked without explanation or context. often the invocation would start with the phrase “it is well-known that. . . ” it may be well-known to those who know it well, but that is unlikely to be the customer or client.
(?一个假设,方程,引用,或过程调用没有解释或上下文。经常直接从“众所周知开始写。“可能对于很了解的人来说它是众所周知的, 但这对客户来说不太可能。)
(混乱,缺失,或者错误的模型定义;模型定义更加复杂,比数学更重要,因为他们不仅名字被下定义的词,但也必须指定它是什么,它是用于) ?failure to reach a conclusion. (没有得到结论)
?conflicting subproble models with unexplained conflicts between assumptions. (冲突的模型无法解释的假设之间的矛盾) ?unexplained inconsistencies in data. (没有解释不一致的数据)
一个不清楚、不完整或不具备代表性的信写给编辑 ?a poor abstract: 一个不好的摘要
太多的细节,以至于很难看到模型的总体结构或使用它的策略; 太少的细节,以至于读者很难看出实际做了什么
?poor presentation, including bad prose style, poor vocabulary, and disorganized explanations. good presentation won’t get a bad paper into
thefinals, but poor presentation may keep a good one out. (the weight given to this criterion varies among the judges.)
糟糕的表述,包括坏的散文式风格,可怜的词汇,和混乱的解释。好的表述不会让不好
的文章进入最后的评审,但糟糕的表述可能会使得一个好的文章脱颖而出。 期刊编辑的页纸的信是一个重要的问题的一部分。它的目标是给洞察团队是否可以解释他们的结果很明显,简单和直接。建模的最重要的标准是是否使用模型,直接增加理解(通过使用)或间接(通过出版物、会议、或专业工具,如软件)。不能理解模型,将不会使用。一个好的信应该在仅仅一页纸中表达出问题的概述,技术,和结果。每个团队的清晰的信是一个迹象表明他们的模型如何在现实世界中运行。
相关推荐: